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Abstract

We consider the problem of sequential data assimilation for transportation networks using optimal filtering
with a scalar macroscopic traffic flow model. Properties of the distribution of the uncertainty on the true state
related to the specific nonlinearity and non-differentiability inherent to macroscopic traffic flow models are
investigated, derived analytically and analyzed. We show that nonlinear dynamics, by creating discontinuities
in the traffic state, affect the performances of classical filters and in particular that the distribution of the
uncertainty on traffic state at shock waves is a mixture distribution. The non-differentiability of traffic
dynamics around stationary shock waves is also proved and the resulting optimality loss of the estimates is
quantified numerically. The properties of the estimates are explicitly studied for the Godunov scheme (and
thus the Cell-Transmission Model), leading to specific conclusions about their use in the context of filtering,
which is a significant contribution of this article. Analytical proofs and numerical tests are introduced to
support the results presented. A Java implementation of the classical filters used in this work is available
on-line at http://traffic.berkeley.edu for facilitating further efforts on this topic and foster reproducible
research.

Keywords: traffic flow, macroscopic modeling, sequential estimation, data assimilation, conservation law,
Riemann problem

1. Introduction

1.1. Motivation

At the age of ubiquitous sensing, scientists and engineers are faced with the challenge of leveraging massive
cross-domain datasets to solve increasingly complex problems and address systemic issues at unprecedented
scales [40]. In transportation networks, the spread of crowd-sourced traffic data is revolutionizing traffic
data collection. In parallel, the democratization of publicly available and easily accessible high performance
computing resources offer scalable tools for massive data processing. This conjunction of factors is acceler-
ating the pace of development and implementation of novel on-line traffic estimation methods and filtering
algorithms, from which real-time congestion control strategies may be designed at the scale of mega-cities.

The theory of estimation is concerned with the problem of providing statistics of a process state, based on
measurements and a-priori knowledge. The a-priori knowledge of the process often consists of a parametric
model, which approximately describes the process behavior mathematically. The definition of a loss function
allows for the formulation of the estimation problem as an optimization problem and the identification of
certificates of optimality. When the estimated quantities are not directly observed, (so-called latent variables)
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the estimation problem is referred to as an inverse problem [48]. For physical systems, the estimation problem,
or data assimilation problem [9, 52], is solved using a data assimilation algorithm, which combines optimally,
in the sense of the loss function, the a-priori knowledge of the system, and the observations from the system.
In particular, a filtering algorithm provides the solution to an inverse problem which includes the additional
constraint that, for all times t, only observations at or before time t can be used to compute estimates at
time t.

The basis for modern filtering theory was set by Kalman in 1960 who introduced a sequential filtering
algorithm for linear dynamical systems, the Kalman filter (KF) [49]. This algorithm extended the work
of Wiener [85] and proposed one of the first results on optimal filtering for linear dynamical systems with
non-stationary statistics. The KF sequentially computes the best estimate of the true state of a system
from combined knowledge of a model and observations. The KF has been widely applied by the control
community, notably to signal processing, sensor data fusion, navigation and guidance [5, 68].

In the meteorology community, the estimation problem for nonlinear systems has been heavily studied,
with subsequent development of sophisticated data assimilation techniques [9, 52], which fall into two major
categories: variational methods and optimal interpolation methods. Variational methods [52] consist of
finding the solution of a model (with or without stochastic forcing) which minimizes a certain distance to
observations. In meteorology, a common formulation is the 3D-Var algorithm [19] for the static problem and
4D-Var algorithm in the time-varying case [20].

The need for solving the inverse problem for increasingly complex systems, for which the classical assump-
tions of linearity of the dynamics and normality of the error terms break, has motivated the development
of suboptimal sequential estimation algorithms. Suboptimal sequential estimation algorithms, reviewed in
Section 2.2 and Section 2.3, can be derived from the KF by different types of methods:

1. Deterministic filters: extended Kalman filter (EKF) [1], unscented Kalman filter (UKF) [46].

2. Stochastic filters: ensemble Kalman filter (EnKF) [28], particle filter (PF) [56].

For traffic applications, it is also important to mention the mixture Kalman filter (MKF) [13], which provides
optimality guarantees for conditionally linear systems. A comprehensive review of the application of data
assimilation algorithms in the transportation community can be found in the following section.

1.2. Sequential estimation for transportation networks

Sequential traffic state estimation dates back to the 1970’s and the work of Gazis [30, 77], who indepen-
dently used the KF and the EKF to estimate traffic density in the Lincoln tunnel, New-York, for the purpose
of traffic control. More recent work from Papageorgiou [82, 83] involves the application of the EKF to a
non-scalar traffic model [65]. The EKF has also been applied [69] to the LWR equation with a Smulders [71]
flux function.

The MKF [13] is an extension of the KF to conditionally linear dynamical systems. The MKF has been
applied in the transportation community [39, 75, 78] to the cell-transmission model (CTM) [22, 23], which
exhibits piecewise linear dynamics, conditioned on the phases of traffic (free-flow, congestion) upstream and
downstream.

In the recent years, sequential Monte Carlo methods, or PF, and so-called ensemble methods such as the
EnKF have been applied to traffic estimation [60, 87]. Ensemble methods [28] consist of representing the
first moment of the state estimate distribution by a set of samples and using a linear measurement update,
whereas particle methods [33] consist in propagating a sample representation of the full distribution of the
estimate and using a nonlinear measurement update.

Another notable filter is the UKF [46] which introduces an unscented transformation providing an exact
representation of the first two moments of a distribution by a set of deterministically determined samples
(see [59] for a traffic application).

A variety of traffic models and filters have been shown to perform well for practical applications. However,
the problem of the structural limits of data assimilation algorithms for traffic estimation has not received
much attention. It is well-known that, in practice, high accuracy can be achieved with sufficiently accurate
measurements in sufficiently large volumes. But with massive datasets coming from increasingly diverse
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sources, traceability and high quality of traffic data are not necessarily guaranteed. Being able to identify
the estimation errors inherent to the structure of traffic phenomena is required for the design of more robust,
transparent data assimilation algorithms, and scalable, appropriate data collection methodologies.

In this article, we propose to analyze the structural properties of one of the most classical macroscopic
traffic flow models, the Lighthill-Whitham-Richards (LWR) partial differential equation (PDE) [55, 67], in
the context of estimation. We present the difficulties resulting from these properties, which create significant
challenges for the design of an optimal filtering algorithm for this model. The main contributions of the
article are outlined in the following section.

1.3. Optimal filtering for LWR PDE

Structural properties of the LWR PDE and its discretized forms impact the optimality of estimates
produced by classical sequential estimation techniques. The main contributions of this article are the analysis
and quantification of the lack of estimate optimality resulting from the following properties of the LWR PDE,
and its numerical discretization using the Godunov scheme:
Nonlinearity of the fundamental diagram
One of the main properties of the LWR PDE is the nonlinearity of its flux function (fundamental diagram),
which allows the modeling of traffic phases of different nature: free-flow and congestion. Nonlinearities
of the model are the cause of the appearance of discontinuities in the solution of the partial differential
equation. Consequently, the distribution of the uncertainty on the true state is a mixture distributions at
shock waves even for unimodal noise distributions on the initial condition. In this article, we analytically
show the emergence of mixture distributions in the solution of the PDE and numerically illustrate their
importance on benchmark tests.

The mixture nature of the distribution of the uncertainty on the true state resulting from initial condition
uncertainty propagating through an uncertain model raises the question of the relevance of minimal variance
estimate for traffic applications. The estimate mean produced by classical filters may indeed correspond to
a state with zero true probability, and the estimate covariance may exhibit large values corresponding to a
variability due to the coexistence of different modes in the distribution of the uncertainty on the true state,
each with significantly smaller covariance.
Non-differentiability of the discretized model

The most common numerical scheme used to compute the solution of the LWR PDE is the Godunov
scheme [32], a finite volume scheme which consists of iteratively solving Riemann problems [24] between
neighboring discretization cells and averaging their solution at each time-step on each spatial cell. In this
article we prove that this scheme is non-differentiable and derive the expression of its non-differentiability
domain.

The lack of differentiability of the Godunov scheme, a common discretization of the LWR PDE, is
relevant for data assimilation algorithms whose optimality guarantees are based on Taylor series analysis,
which assumes exact computation of the derivative up to a certain order. This is the case in particular
for the EKF, which considers propagation of the estimate covariance using the tangent (linearized) model.
Numerical results quantify estimate errors induced by this property of the discretized model. The result also
affects known order of accuracy of the estimate moments of the UKF, since in this case the Taylor series
does not exist up to the required order.

This article can thus be viewed as a theoretical and numerical study of the implications of the structural
properties of the Godunov scheme and CTM on filtering algorithms. It sheds some new light on the proper
use of these schemes for traffic estimation purposes, and provides conclusions which are illustrated by detailed
numerical studies.

While the results presented in this article are derived for the Godunov scheme, because historically is
was one of the first numerical schemes proposed to solve scalar hyperbolic conservation laws (and the LWR
PDE in particular), other proposed schemes such as the CTM exhibit the same features as the Godunov
scheme, and thus our analysis applies to them as well.

The remainder of the article is organized as follows. Section 2 introduces the general theory of sequential
data assimilation and optimal filtering. In Section 3 we present the most classical discrete and continuous
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macroscopic traffic models for which the study is conducted. Section 4 focuses on the Riemann problem which
is the keystone of numerical solutions of continuous and discrete scalar conservation models and the focus
of our subsequent analysis. Section 5 and 6 point at the structural properties of macroscopic traffic models
derived from the LWR PDE, in particular model nonlinearity in Section 5 and model non-differentiability in
Section 6. Section 7 gives concluding remarks and examines associated issues regarding data fusion.

2. Sequential data assimilation

The theory of inverse problems [48] is concerned with the estimation of model parameters. A specific
type of inverse methods consists in iteratively updating the estimates as data becomes available [26], instead
of solving an inverse problem once using all measurements in batch. These so-called sequential estimation
algorithms, particularly appropriate for on-line estimation, often rely on Bayes rule and a computationally
explicit optimality criterion (e.g. Gauss-Markov theorem for minimum mean squared error (MMSE) esti-
mation). In the case of additive noise, one of the most well-known sequential estimation algorithms is the
seminal Kalman filter [49].

2.1. Kalman filter

Given a system with true state at time t denoted by Ψt, and Yt the vector of all available observations
up to time t, the filtering problem is concerned with the computation of an optimal estimate of Ψt for a
predefined loss function. Solvability of the estimation problem heavily depends on the loss function used,
and on the statistics considered.

The use of the quadratic loss function dates back to the estimation problem posed by Gauss in the 18th

century for astronomy [73, 74]. The solution proposed by Gauss is the so-called least-squares method, justified
by the Gauss-Markov theorem [45]. The theorem proves that, assuming a linear observation model with
additive white noise, the best linear unbiased estimator (BLUE) (best in the minimum variance sense), of a
random process ψt can be computed as the solution to the ordinary least squares (OLS) problem.

The role of the quadratic norm for estimation is further emphasized by a result from Sherman [70], which
shows that for a large class of loss functions, which includes the quadratic loss function, the mean of the
conditional distribution p(ψt|Yt) is optimal.

Formally, given a loss function L(·) such that:

L(0) = 0

∃ f real-valued convex s.t. ∀ψ1, ψ2 s.t. f(ψ1) ≥ f(ψ2) (1)

then L(ψ1) ≥ L(ψ2),

given a random variable ψ, if the probability density function associated with the random variable ψ is
symmetric around the mean, and unimodal, then E(ψ) is the optimal estimator of ψ for the loss function
L(·).

When applied to the conditional random variable ψt|Yt, this shows that the conditional mean is the opti-
mal estimator in the sense of the loss function L(·) for this particular class of loss functions and probabilities.

The statistical assumptions on the processes ψt and Yt are tied to prior knowledge of the generative
distributions. However, a significant computational argument in favor of the use of normal statistics is the
optimality guarantee provided by combining the two arguments above. Without any assumption on the
statistics, the Gauss-Markov theorem states that the BLUE is given by the solution to the OLS algorithm.
Sherman’s result (1) states that the solution of the OLS is the conditional mean. In the Gaussian case the
conditional mean is linear, hence it is also the solution of the OLS with constraint that the estimator be
linear. Hence the BLUE of the process is optimal, without restriction of linearity on the estimator, if we
assume that the statistics are Gaussian.

In his seminal paper [49], Kalman provides a sequential algorithm to compute the BLUE of the state for
dynamical systems, under additive white Gaussian noise, with a deterministic linear observation equation
(this result was later extended to include additive white Gaussian observation noise). The KF is defined in a
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state-space model, which consists of a state equation and an observation equation. In the following, we note
xt the state at time t, a discrete computable approximation of the deterministic true state Ψt.

For transportation applications involving macroscopic variables, the state is typically a set of densities,
speeds, or counts, defined on a discretization grid. The true state consists of the true traffic conditions on the
road, which are only available to an oracle, or some high fidelity datasets such as the NGSIM dataset [64].
For simulation purposes, it is common practice to use a well-calibrated model, or a Monte Carlo simulation
with high number of samples, as a proxy for the true state (to avoid the so-called inverse crime [48], the
model used for estimation should be different from the model used for computing the true state).

We consider the following discrete linear model:

xt = At xt−1 + wt (2)

where we note At the state model or time-varying state transition matrix at time t, and where the random
variable wt ∼ N (0,Wt) is a white noise vector which accounts for modeling errors. In particular in this
setting the true state Ψt is assumed to follow the dynamics At without additional noise. Measurements are
modeled by the linear observation equation:

yt = Ct Ψt + vt (3)

where vt ∼ N (0, Vt) is a white noise vector which accounts for measurement errors assumed uncorrelated
with modeling errors, and Ct is the modeled measurement matrix at time t (also time-varying, to integrate
the possibility of moving or intermittent sensors). The KF sequentially computes the BLUE estimate at
time t+ 1 from the BLUE estimate at time t as follows:

Forecast:

{
xt+1|t = At+1 xt|t

Σt+1|t = At+1 Σt|tA
T
t+1 +Wt+1

(4)

Analysis:


xt+1|t+1 = xt+1|t +Kt+1

(
yt+1 − Ct+1 xt+1|t

)
Σt+1|t+1 = Σt+1|t −Kt+1 Ct+1 Σt+1|t

where Kt+1 = Σt+1|t C
T
t+1

(
Ct+1 Σt+1|t C

T
t+1 + Vt+1

)−1

(5)

The forecast step (4) consists in propagating the mean and covariance of the state through the linear
model (2). The analysis step (5) amounts to the computation of the conditional mean of the state given the
observations, for the linear observation model (3) and jointly Gaussian statistics. The conditional covariance
is computed similarly. From a Bayesian perspective, the Kalman filter sequentially computes the posterior
distribution of the state, based on the prior distribution given by the state-space model.

When the state model is not linear, there is no general analytical expression for the propagation of the
statistics. Suboptimal filters of different types have been derived. Stochastic methods consider propagating
the state through the nonlinear model using a sample representation. Deterministic methods consist in
propagating analytical approximations of low order moments through the model. Stochastic methods require
in general sampling schemes and pseudo-random generators for the correct execution of the filters, unlike
deterministic methods.

2.2. Deterministic filters

In this section we present the EKF and the UKF for nonlinear systems. The EKF forecast step is based on
model linearization. The UKF consists in representing exactly the first two moments of the prior distribution
by a set of deterministic samples. In particular, no sampling term is required for the application of these
algorithms.

2.2.1. Extended Kalman filter

The EKF is an extension of the KF for nonlinear state-space models. The EKF consists in using a Taylor
series truncation of the model at the current state to propagate the state statistics. We present the case of
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a nonlinear state model combined with a linear observation model, although nonlinear observation equation
can also be considered through a similar linearization of the observation operator at the analysis step. The
forecast mean is given by a zeroth order truncation of the model, whereas the forecast covariance is given
by a first order truncation of the model. If we note At+1 the linearization of the nonlinear model dynamics
A(·, t) at the state estimate xt|t, the forecast and analysis steps for the EKF read:

Forecast:

{
xt+1|t = A(xt|t, t)

Σt+1|t = At+1 Σt|tA
T
t+1 +Wt+1

(6)

Analysis:


xt+1|t+1 = xt+1|t +Kt+1

(
yt+1 − Ct+1 xt+1|t

)
Σt+1|t+1 = Σt+1|t −Kt+1 Ct+1 Σt+1|t

where Kt+1 = Σt+1|t C
T
t+1

(
Ct+1 Σt+1|t C

T
t+1 + Vt+1

)−1

(7)

where the only difference with the Kalman filter resides in the propagation of the state mean at the forecast
step, using the nonlinear state model. Different sources of sub-optimality arise in the derivation of the EKF:

1. Accuracy of the Taylor truncation:

a The model approximation used at the forecast step (6) for the covariance propagation requires that
the model Jacobian be accurately computed.

b The mean given by the EKF is a first order Taylor series approximation of the MMSE, whereas the
covariance is a third order approximation of the MMSE error covariance.

2. Closure assumption: it is assumed that there is no significant interaction between higher order
statistics and the first two moments of the state estimate.

Cases in which the closure assumption breaks, due to the importance of higher order terms in the model
Taylor series have been documented, with illustrations of estimates biased and inconsistent [46], and with
diverging error statistics [25]. Cases in which this assumption breaks, due to the importance of higher-order
statistics can be found in [61, 62] in the case of bimodal distributions.

Remark 1. An approximation made in the EKF equations lies in the propagation of the state covariance
Σt+1|t. This covariance is then used at the analysis step (7) at which observations are combined with the
model forecast. The study of the resulting error structure of the state covariance after propagation in the
context of traffic is to the best of our knowledge an open problem, and is a focus of this article.

2.2.2. Unscented Kalman filter

The UKF [46] is built on the unscented transformation, which consists in representing a distribution with
mean µ and variance Σ by a set of weighted samples, or sigma points, chosen deterministically such that the
weighted sample mean is µ and the weighted sample covariance is Σ [47]. For for a state-space of dimension
n, the 2n+ 1 sigma points produced by the unscented transformation are defined as

x0 = µ

xk = µ+ ((n+ κ) Σ)
1
2

k k = 1, . . . , n

xk+n = µ− ((n+ κ) Σ)
1
2

k k = 1, . . . , n

(8)

where ((n+ κ) Σ)
1/2
k denotes the kth column of the square root of (n+ κ) Σ. The corresponding weights wk

are parameterized by κ, which controls the spread of the sigma points:
w0 = κ

κ+n

wk = 1
2(κ+n) k = 1, . . . , n

wk+n = 1
2(κ+n) k = 1, . . . , n.

(9)
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Choosing the samples according to (8) and the weights according to (9) yields that the weighted sample
mean and weighted sample covariance are equal to the distribution mean and covariance for any choice of κ.
The forecast and analysis step of the augmented UKF [37] can be written as:

Forecast:



Propagate sigma-points

xkt+1|t = A(xkt|t, t) k = 0, . . . , 2n

Compute forecast mean and covariance

xt+1|t =
∑2n
k=0 wk x

k
t+1|t

Σt+1|t =
∑2n
k=0 wk

(
xkt+1|t − xt+1|t

) (
xkt+1|t − xt+1|t

)T
(10)

Analysis:



Compute sigma-points observations

zkt+1|t = Ct+1 x
k
t+1|t k = 0, . . . , 2n

Compute observation mean and covariance

zt+1|t =
∑2n
k=0 wk z

k
t+1|t

Zt+1|t =
∑2n
k=0 wk

(
zkt+1|t − zt+1|t

) (
zkt+1|t − zt+1|t

)T
Compute covariance between forecast and observation

Yt+1|t =
∑2n
k=0 wk

(
xkt+1|t − xt+1|t

) (
zkt+1|t − zt+1|t

)T
Compute posterior mean and covariance

xt+1|t+1 = xt+1|t +Kt+1

(
yt+1 − zt+1|t

)
Σt+1|t+1 = Σt+1|t −Kt+1 Zt+1|tK

T
t+1

where Kt+1 = Yt+1|t Z
−1
t+1|t

(11)

where the unscented transformation is first used to compute the sigma points for the current estimates,
which are then propagated through the model and whose mean and covariance is computed (10). At the
analysis step, the forecast observation associated with each sigma point through the (potentially) nonlinear
observation model Ct+1, is computed as zkt+1|t, which allows the computation of the observation mean zt+1|t,
observation covariance Zt+1|t, and the covariance between forecast state and observation as Yt+1|t. The
analysis mean and covariance are then computed exactly using Kalman equations (11).

Different sources of sub-optimality arise in the UKF:

1. Limited number of samples: the mean and the covariance propagated by the UKF are third order
approximations of the MMSE and MMSE error covariance.

2. Closure assumption: it is assumed that there is no significant interaction between higher order
statistics and the first two moments of the state estimate.

The UKF has been applied to traffic estimation [59] and was compared with the EKF for the Papageorgiou
model (23). The two filters were empirically shown to have similar performances for joint state and parameter
estimation [37] for this model (23). The results of this comparison are completed by the analysis presented
in the present article in Section 5 and Section 6, in which we study the state distribution features due to
model nonlinearities and non-differentiability analytically and numerically in the case of the LWR model,
and in which we show how they affect the EKF and the UKF. In particular we analyze the true distribution
structure at shock waves of the LWR model, in the continuous and discrete domain. The Papageorgiou
model is defined in the discrete domain, and exhibits an anticipation term which reduces the sharpness and
amplitude of spatial variations. Consequently, the impact of the existence of shock waves on the performance
of the filters is stronger in the case of the LWR model in the continuous domain, as illustrated in the present
article.

2.3. Stochastic filters

A wide variety of filters extend the Kalman filter for nonlinear state models by representing the state by
a set of random samples (particles, ensemble members). The rules for sample propagation, update, and for
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resampling, are of different types. The need for pseudo-random generator at every step of these algorithms
justifies the appellation stochastic filters.

2.3.1. Ensemble Kalman filter

The EnKF [27, 28] consists in representing the state statistics by a set of ensemble members which are
evolved in time and whose mean is an estimator of the true state. The state error covariance is represented
by the ensemble covariance. Formally, with N ensemble members, the EnKF equations read:

Forecast:


xkt+1|t = A(xkt|t, t) + wkt+1 k = 1, . . . , N

xt+1|t = 1
N

∑N
k=1 x

k
t+1|t

Σt+1|t = 1
N−1

∑N
k=1

(
xkt+1|t − xt+1|t

)(
xkt+1|t − xt+1|t

)T (12)

Analysis:


xkt+1|t+1 = xkt+1|t +Kt+1

(
yt+1 + vkt+1 − Ct+1 x

k
t+1|t

)
k = 1, . . . , N

Σt+1|t+1 = Σt+1|t −Kt+1 Ct+1 Σt+1|t

where Kt+1 = Σt+1|t C
T
t+1

(
Ct+1 Σt+1|t C

T
t+1 + Vt+1

)−1
.

(13)

In the limit of large number of samples, the EnKF converges toward the KF for linear systems. Due to the
independent ensemble forecasts (12), it is embarrassingly parallel and particularly appropriate for efficient
distributed computations. At the analysis step (13), the modeled observation noise is explicitly added to
the measured observation, to capture the full observation noise in the analysis equation [11]. In the context
of traffic estimation, the EnKF has been applied to the Bay Area highway networks with a traffic model
equivalent to the LWR PDE, formulated in the velocity variable [87]. The principal source of sub-optimality
arising in the EnKF is sampling error:

1. Sampling error: the use of a finite number of ensemble members introduces a sampling error in the
estimate distribution.

Remark 2. The covariance given by the EnKF is the state error covariance and not the state covariance.
In the KF, the state mean and state error covariance are propagated analytically. The state error covariance
coincides with the state covariance. On the other hand, the EnKF analytically propagates ensemble members
whose mean is an unbiased estimator of the state mean, and covariance coincides by definition of the update
equations with the state error covariance, but not with the state covariance, except in the limit of an infinite
number of ensemble members.

Extensions of the EnKF allowing to obtain higher order moments of the state distribution have also been
considered [2] by integrating a modified analysis step.

2.3.2. Particle filter

The PF, also known as bootstrap filter, or sequential Monte Carlo method [3, 33, 56] can be traced back
to the seminal articles of Metropolis and Ulam [58], later generalized by Hastings [36]. These methods
represent the full statistics of the state by a set of samples which are propagated through the state model.
When observations are received, sample weights are scaled by the relative likelihood of the new observation,
and the updated representation of the probability distribution is re-sampled. Formally, the PF steps in the
case of N particles are as follows:

Forecast: xkt+1|t = A(xkt|t, t) + wkt+1 k = 1, . . . , N

Analysis:



Re-weighting:

αkt+1 = αkt
p(yt+1|xk

t+1|t)∑N
k=1 α

k
t p(yt+1|xk

t+1|t)
k = 1, . . . , N

Re-sampling:

Generate N samples xkt+1|t+1 from the distribution defined by

P (X = xkt+1|t+1) = αkt+1, k = 1, . . . , N
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The PF has been applied to the case of transportation systems [60] on the stochastic model described in [8].
The particle filter is the only filtering method able to capture the complete state distribution, in the limit of
infinite number of samples, without restrictive assumption on the dynamics or on the statistics. Well-known
weaknesses of the PF relate to the problem of sample degeneracy for high dimensional [72] systems. The use
of an appropriate proposal distribution at the re-weighting step is key to reducing the sample weight variance
given the system history, but more sophisticated importance sampling or rejection sampling techniques are
often considered [3, 81]. The sources of sub-optimality in the PF relate to:

1. Sampling error: the use of a finite number of particles introduces a sampling error in the estimate
distribution.

The implicit particle filter is a notable extension [14] of the PF which allows a-priori the definition of the
desired weights of the particles after analysis and thus alleviation of the problem of sample degeneracy in
the case of the exponential family. Another research track has explored the use of the EKF, EnKF or UKF
to compute the proposal distribution in the particle filter [81].

Sustained improvements of the filters presented above have been in large part driven by specific improve-
ments for systems exhibiting strong nonlinearity or non-normality, identified as the causes of inaccurate
estimates and forecast. In the following section, we present the seminal macroscopic traffic models which
have been considered for real-time data assimilation on transportation networks. The subsequent sections
will then focus on the analysis of the performance of the respective filtering schemes on the models, which
is one of the contributions of the article.

3. Macroscopic traffic modeling

Macroscopic traffic modeling consists of considering traffic phenomena as a continuum of vehicles, in-
stead of modeling individual vehicle dynamics. Macroscopic traffic models are historically inspired from
constitutive hydrodynamics models, which exhibit similar properties with traffic flow. In this section we
introduce one of the most common scalar traffic models, as well as some non-scalar models classically used
for estimation.

3.1. Scalar models of traffic flow

Classical scalar models of traffic consider the traffic state at a point x at time t to be fully represented
by the density ρ(t, x) of vehicles at this point. The evolution of the density of vehicles can be modeled by a
combination of physical principles, statistical properties, and empirical findings. All the models considered
in this section are single-lane single-class models of traffic.

3.1.1. Continuous models

A classical state equation used to model the evolution of the density ρ(·, ·) of vehicles on the road network
is the LWR PDE [55, 67], which expresses the conservation of vehicles on road links:

∂tρ+ ∂xQ(ρ) = 0 (14)

where the flux function Q(·), assumed to be space-time invariant on limited space-time domains, denotes
the realized flux of vehicles with the density ρ, at the stationary state. The flux function, or fundamental
diagram, is classically given by an empirical fit of the relation between density and flow. It can be equivalently
given by an empirical fit V (·) of the relation between density and space-mean speed, which allows us to define
the flux function as:

Q(ρ) = q = ρ v = ρ V (ρ),

where the central equality is a definition of the flow q. A variety of parametric flux functions can be found
in the literature. One of the earliest flux functions is the Greenshields flux function [35] or quadratic flux
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function (represented in Figure 1, left), which expresses a linear relationship between density and speed, or
equivalently a quadratic relation between density and flow:

Q(ρ) = vmax ρ

(
1− ρ

ρmax

)
(15)

where vmax denotes the free-flow speed and ρmax the jam density. The Newell-Daganzo flux function [23, 63]
or triangular flux function, represented in Figure 1, center, is a piecewise linear function of the density, with
different slopes in free-flow and congestion:

Q(ρ) =

{
ρ vmax if ρ ∈ [0, ρc]

ρc vmax
ρmax−ρ
ρmax−ρc if ρ ∈ [ρc, ρmax]

(16)

where ρc denotes the critical density, which represents the density at which the realized flow is maximal.
The speed of backward moving waves in congestion is given by w = vmax ρc/(ρc − ρmax). Variations on a
flux function based on an exponential relation between density and flow [54, 65], parameterized by a, such
as the one represented in Figure 1, right, can be found in the literature:

Q(ρ) = ρ vmax exp

(
−1

a

(
ρ

ρc

)a)
. (17)

The interested reader might also consider the Greenberg fundamental diagram [34] or the Van-Aerde funda-
mental diagram [80].
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c
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Figure 1: Fundamental diagrams: Greenshields (left), triangular (center), exponential (right).

Remark 3. The LWR PDE models the evolution of traffic flow on a road segment with uniform topology. A
junction is defined by a change of topology (crossing, number of lanes, speed limit, curvature, etc) on a road
segment, which requires specific efforts for physical consistency and mathematical compatibility with the link
model. A junction can be modeled as a vertex of the graph representing the road network. To each vertex is
associated an allocation matrix A, where aij expresses the proportion of the incoming flow from link j going
to link i. For uniqueness of the solution of the junction problem, different conditions have been considered
in the literature: for instance maximizing the incoming flow through the junction [17, 23] or maximizing a
concave function of the incoming flow [41]. A formulation using internal dynamics for the junction [50] has
been shown to be equivalent to the vertex models for merge and diverge junction. The interested reader is
referred to the book from Garavello et Piccoli [29] for more details on the junction problem.

For traffic applications, given an initial condition ρ0(·) defined on a stretch [0, L], using the LWR model
requires solving the associated Cauchy problem, defined as the problem of existence and uniqueness of a
solution to the LWR PDE with initial condition ρ0(·). If the initial condition is piecewise constant (which is
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the case for many numerical approximations) and self-similar1, the Cauchy problem reduces to the Riemann
problem (see Section 4.2). We focus our analysis for data assimilation on the Riemann problem, which, by
its simplicity, allows full analytical and numerical characterization of the relation between initial condition
uncertainty and structure of the uncertainty in the solution to the PDE.

3.1.2. Discretized link models

Given a discretization grid defined by a space-step ∆x and a time-step ∆t, if we note ρni the discretized
solution at i∆x, n∆t and Cni the cell defined by Cni = [n∆t, (n+1) ∆t]× [i∆x, (i+1) ∆x], the discretization
of the LWR PDE using the Godunov scheme [32] reads:

ρn+1
i = ρni +

∆t

∆x

(
qG(ρni−1, ρ

n
i )− qG(ρni , ρ

n
i+1)

)
(18)

where the numerical Godunov flux qG(·, ·) is defined as follows for a concave flux function Q(·) with a
maximum at ρc:

qG(ρl, ρr) =


Q(ρl) if ρr ≤ ρl < ρc

Q(ρc) if ρr ≤ ρc ≤ ρl
Q(ρr) if ρc < ρr ≤ ρl
min(Q(ρl), Q(ρr)) if ρl < ρr

(19)

Remark 4. Another common scheme for hyperbolic conservation laws is the random approximation scheme
introduced by Glimm [31], which consists in constructing an approximate solution by randomly sampling from
the values of the solution in a neighborhood at the previous time step. For the sake of concision, the analysis
in the present article is limited to finite volume methods, and the Godunov scheme in particular.

The Godunov scheme is a first order finite volume discretization scheme commonly used for numerical
computation of weak entropy solutions to one-dimensional conservations laws such as the LWR PDE [53].
The design of the Godunov scheme dynamics (18) results from the following steps:

1. At time n∆t, for each couple of neighboring cells Cni , Cni+1, compute the solution to the Riemann
problem defined at the intersection of cells Cni , Cni+1, by the left datum ρni and the right datum ρni+1.

2. At time (n+1) ∆t, on each domain {(n+ 1) ∆t}×[i∆x, (i+ 1) ∆x] compute the average of the solution
of the Riemann problem. Specifically, integrating the LWR PDE on the domain Cni ,∫∫

Cni

(
∂ρ

∂t
+
∂Q(ρ)

∂x

)
dsdy = 0 (20)

and applying the Stokes theorem on Cni to this equality yields:

∆x ρn+1
i −

∫ (n+1) ∆t

n∆t

Q(ρ(s, i∆x))ds−∆x ρni +

∫ (n+1) ∆t

n∆t

Q(ρ(s, (i+ 1) ∆x))ds = 0, (21)

where we note ρn+1
i the space average of the solution to the Riemann problems on {(n+ 1) ∆t} ×

[i∆x, (i+ 1) ∆x]. Since the solution to the Riemann problems are auto-similar, hence constant at i∆x
and (i+ 1) ∆x, if we note respectively Q(ρni−1, ρ

n
i ), Q(ρni , ρ

n
i+1) the value of the corresponding flow at

these locations over the interval [n∆t, (n+ 1) ∆t], we obtain:

∆x ρn+1
i −∆x ρni = ∆tQ(ρni−1, ρ

n
i )−∆tQ(ρni , ρ

n
i+1),

which is the dynamics equation (18) of the Godunov scheme.

1A function f of n variables x1, . . . , xn is called self-similar if ∀α > 0 ∈ R, f(αx1, . . . , α xn) = f(x1, . . . , xn).
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The first step of the Godunov scheme is exact whereas the second step, through averaging, introduces
numerical diffusion (see [53] for more details). The consequence of this diffusion on estimation is further
discussed in Section 5.

Remark 5. It must be noted that grid-free algorithms allow to compute numerical solutions of scalar con-
servation laws without numerical diffusion [10], with a higher complexity in general. In the case of trans-
portation, some algorithms have be shown to be exact for specific fundamental diagrams and particular initial
and boundary conditions [15, 16, 57, 86].

The Godunov scheme has been shown to provide a numerical solution consistent with classical traffic
assumptions [51] and to be equivalent to the supply-demand formulation for concave flux functions with
a single maximum. In the case of a triangular flux function (16), the Godunov scheme reduces to the
CTM [22, 23]:

qG(ρl, ρr) = min

(
ρl V, ρc V, ρc V

ρmax − ρr
ρmax − ρc

)
,

which thus inherits the properties causing the filtering difficulties motivating the present article. The Go-
dunov scheme (18) defines the state equation used by the estimation algorithms from Section 2. Analysis of
the nonlinearity and non-differentiability of the Godunov scheme in the context of estimation are the subject
of Section 5.2 and 6.

3.2. Non-scalar models of traffic flow

Non-scalar models of traffic flow consider additional state variables and additional physical principles to
model traffic states. One of the first non-scalar traffic flow models is the Payne-Whitham model [66, 84]:{

∂tρ+ ∂xq = 0

∂tv + v vx +
c20
ρ ∂xρ = V (ρ)−v

τ .
(22)

The first equation expresses the conservation of vehicles, and the second equation models the evolution of
speed, which is subject to convection, anticipation, and relaxation (respectively second and third left-hand
side terms of second equation, and right-hand side term of the second equation).

The EKF has been applied to networks2 for state and parameter estimation [82, 83], with the following
discretization of the Payne-Whitham model (22):

ρn+1
i = ρni + ∆t

∆x

(
qni−1 − qni

)
vn+1
i = vni + ∆t

∆x v
n
i

(
vni−1 − vni

)
+ ∆t

τ (V (ρni )− vni )− c20 ∆t
τ∆x

ρni+1−ρ
n
i

ρni +κ

qni = ρni v
n
i

(23)

where κ is a regularization parameter and the function V (·) is the exponential fundamental diagram (17).
Other notable models with two state variables (so-called second order models) include the Aw-Rascle model [4],
the non-equilibrium model [89], or the phase transition model [6, 18]. Traffic models with three state variables
have also been proposed [38] by addition of a state equation for the variance.

In this article, we focus our analysis on scalar models and specifically on nonlinearity and non-differentiability
of the flow associated with the Riemann problem, which is an example of Cauchy problem representing the
evolution of traffic discontinuities, which are critical for several applications (see following Section 4.1). This
applies on a case-by-case basis to higher order models with similar features. The discrete second order
model (23) is by definition unable to capture discontinuities exactly, and differentiable, however structural
properties of the continuous Payne-Whitham model from which it is derived exhibit similarities with the
LWR model [88] and allow the generalization of some of our conclusions.

2For simplicity we omit the network terms (sources and sinks) in equation (23).
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4. Discontinuities and uncertainty

At the macroscopic level, traffic flow exhibits nonlinearities which can be modeled using nonlinear
conservation laws such as the LWR PDE (14). Nonlinearities are the cause for discontinuities which may
arise in finite time in the solution to the Cauchy problem associated with the PDE even with smooth initial
and boundary data. According to the definition of the solution to the Riemann problem (25), shock waves
persist when, at a spatial discontinuity, the upstream density is lower than the downstream density. Thus
they cannot be neglected by any traffic application. Physically, these discontinuities model the existence of
queues, which are one of the main focus of traffic flow research.

4.1. Estimation and control

Queues extremities are phenomena with very limited spatial extent, which characterize the interface
between significantly different phases of traffic flow. This property makes them relatively hard to directly
measure and monitor using classical fixed sensing infrastructure. This is especially true when the upstream
end of the queue is stationary, and can only be directly measured if it lies on a fixed sensor or by probe
vehicles reporting measurements exactly at the corresponding location.

Large traffic variations occurring on a short spatial extent, typical of queues extremities, make them
particularly hazardous, and being able to alert drivers of sudden changes in speed is one of the focal points
of traffic safety applications [42].

For control applications, accurately locating the location and propagation speed of queues is critical.
Their location typically impacts ramp metering algorithms directly, since they are often designed around the
values of the upstream and downstream flow at the upstream end of the queue. In the absence of sensors,
the algorithm depends on the estimated flows upstream and downstream of the ramp.

Furthermore, accurate estimation of the propagation speed of queues is one of the most essential com-
ponents of traffic forecast and dynamic travel-time estimation. Estimating their propagation speed requires
the estimation of the left and right density at the queue extremities, as well as accurate knowledge of the
fundamental diagram.

In the context of model-based estimation, the influence of model nonlinearity and non-differentiability on
the quality of the estimates for traffic phenomena has not received much attention in the traffic community
with a few notable exceptions [37, 76] (see [7] for a related problem for atmospheric models, and [12] for
a study of non-differentiability in a general context). In the following section, we consider the Riemann
problem, which is a benchmark problem for studying the solution to the LWR PDE, and the evolution of
shock waves. We then consider in Section 4.3 the Riemann problem with stochastic datum, which is used
in the following sections as a framework for the study of the propagation of discontinuities in presence of
uncertainties.

4.2. Riemann problem

The Riemann problem is a Cauchy problem with a self-similar initial condition, of the form:

ρ(t = 0, x) =

{
ρl if x < 0

ρr if x > 0
(24)

The solution to the Riemann problem is the solution to the Cauchy problem associated with the PDE with
initial condition the Riemann datum (24). The Riemann problem is a key building block for proofs of
existence of solutions to the Cauchy problem for general initial conditions in the space of bounded variations
(BV), via Helly’s theorem [10]. It is also critical to the design of numerical schemes such as the wavefront
tracking method [10] and the Godunov scheme, which proceeds by iteratively solving the Riemann problem
between discretization cells, before averaging its solution on each cell (see equations (20) and (21)).

For a flux function Q(·) with constant concavity sign, the unique entropy solution to the Riemann problem
is defined for (t, x) ∈ R+\{0} × R as follows
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1. If Q′(ρl) > Q′(ρr) the solution is a shock wave

ρR

(x
t
, ρl, ρr

)
=

{
ρl for x

t < σ

ρr for x
t > σ

(25)

where the location of the discontinuity is x = σt, with σ given by the Rankine-Hugoniot relation:

σ =
Q(ρl)−Q(ρr)

ρl − ρr
(26)

which expresses the conservation of ρ at the discontinuity.

2. If Q′(ρl) < Q′(ρr) the solution is a rarefaction wave

ρR

(x
t
, ρl, ρr

)
=


ρl for x

t ≤ Q
′(ρl)

(Q′)−1(xt ) for x
t ∈ (Q′(ρl), Q

′(ρr))

ρr for x
t ≥ Q

′(ρr)

The interested reader is referred to Evans [24] and Leveque [53] for more details, and Piccoli [29] in the
context of traffic. Shock waves and rarefactions waves respectively model the upstream and downstream
ends of a queue. One may note that depending on the flow difference at the discontinuity, the propagation
speed may be positive or negative.

Remark 6. This brief description of the Riemann problem for the scalar conservation law is also of interest
for continuous non-scalar traffic models in which discontinuities arise (see [6, 88]).

For estimation purposes, it is appropriate to consider uncertain Riemann datum, which requires the
definition of the Riemann problem with stochastic datum.

4.3. Riemann problem with stochastic datum

We consider a Riemann problem for the PDE (14) with stochastic datum [21] defined by:

ρ(t = 0, x) =

{
%l if x < 0

%r if x > 0
(27)

where %l, %r are random variables. We further note ς the random variable defining the resulting shock speed,
whose distribution is given by the distribution of the Rankine-Hugoniot speed (26) for the realizations of
the stochastic datum (%l, %r). We focus our analysis on the case in which each realization of the solution to
the Riemann problem with stochastic datum is a shock wave. In the following proposition, we derive the
analytical expression of the random field solution of the Riemann problem with stochastic datum in this
case.

Proposition 1. The solution of the Riemann problem with stochastic datum (%l, %r) (27) with bounded
support, respectively Dl,Dr such that sup(Dl) < inf(Dr), is a random field %t,x, defined by:

P (%t,x = ρ) = P
(
%l = ρ|ς > x

t

)
P
(
ς >

x

t

)
+ P

(
%r = ρ|ς < x

t

)
P
(
ς <

x

t

)
. (28)

Proof. By assumption on the Riemann datum, sup(Dl) < inf(Dr), the solution of a realization of the Riemann
problem is a shock wave between a realization ρl of %l and a realization ρr of %r, with shock wave speed given
by the Rankine-Hugoniot relation (26) which defines the realizations of the stochastic shock wave speed ς.
If we note 1I the characteristic function of interval I, the solution to a realization of the Riemann problem
at (t, x) ∈ R+\{0} × R is given by:

ρ = ρl1σ> x
t

+ ρr1σ< x
t
.
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which is the solution of the deterministic Riemann problem in the case of a shock wave (25). For (t, x) ∈
R+\{0} × R, a realization σ of the shock wave speed such that σ > x/t, the solution is drawn from the left
datum, which reads:

P
(
%t,x = ρ|ς > x

t

)
= P

(
%l = ρ|ς > x

t

)
.

Writing the similar equation for the case σ < x
t and using the law of total probability, we obtain equality (28),

and the proof.

The case in which the support of the left and right datum do not intersect and are such that all realizations
of the Riemann problem are rarefaction waves can be treated similarly. For simplicity, we do not address
here the case where the support of the left and right datum have a non-empty intersection and consequently
the realization of the solution to the Riemann problem can be a shock wave or a rarefaction wave.

Remark 7. For numerical simulations, correlated initial noise in the Godunov scheme accurately models the
Riemann problem. Specifically, the Riemann problem with stochastic datum can be modeled numerically by
using the same realization of left initial noise for all cells on the left of the discontinuity in the discrete initial
condition, and the same realization of the right initial noise for all cells on the right of the discontinuity in
the discrete initial condition.

In the two following sections, we consider a Riemann problem with stochastic datum modeling initial
condition error. We show specific consequences of the nonlinearity of the PDE on the statistics of the
distribution of the uncertainty on the true state and compare the true solution of the so-called stochastic
Riemann problem with forecast state estimates given by the EKF, UKF and EnKF. We also consider the
solution to the discrete Godunov scheme and assess how diffusion and modeling errors impact the applicability
of the conclusions drawn for the continuous solution to the discrete solution.

5. Model nonlinearity

In this section, we present the consequences of model nonlinearities on the estimate statistics propagated
by different schemes. We show that propagating only the first two moments of the distribution can lead
to significant estimation error at shock waves where mixture distributions between the left and right state
arise and propagate. We show that despite modeling error and numerical diffusion, this phenomenon is also
present in the solution to the Godunov scheme. We focus our analysis on the EKF, EnKF and UKF, which
offer distinct properties; the EKF consists in a linearization of the model, the EnKF exhibits stochastic error
and converges toward the classical Kalman filter in the limit of infinite number of samples, and the UKF
consists in deterministic sampling toward accurate propagation of the first two moments of the estimate
distribution.

5.1. Mixture solution to the Riemann problem

In this section we show that the existence of discontinuities in the solution to the PDE combined with
the existence of stochastic terms in the state-space model may introduce mixture distributions that travel
with shock waves and propagate around them.

We note D the set of points (t, x) for which there is a non-zero probability that, in the (x, t) plane, a
realization of the solution to the Riemann problem with stochastic datum (27) exhibits a discontinuity on
the left of (t, x) and a non-zero probability that a realization exhibits a discontinuity on the right of (t, x):

D =
{

(t, x) ∈ R+\{0} × R|min {P (ς < x/t), P (ς > x/t)} > 0
}
.

Proposition 2. In the domain D, the solution to the Riemann problem with stochastic datum (27) is a
mixture distribution.
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Proof. Outside of D, we have by definition P (ς < x/t) = 0 or P (ς > x/t) = 0. According to equation (28),
in the first case the solution of the Riemann problem is given by P (%t,x = ρ) = P (%l = ρ|ς > x/t), and in
the second case, the solution of the Riemann problem is given by P (%r = ρ|ς < x/t), hence in both cases the
solution is a conditional of the left or right initial datum. In D, the solution is given by equation (28), where
the two weighting terms are non-zero by definition. The random field %t,x is a mixture of the left datum
conditioned on the positivity of ς − x/t, and the right datum conditioned on the negativity of ς − x/t, as
expressed by equation (28).

The mixture nature of the solution of the Riemann problem with stochastic datum is illustrated in
Figure 2, obtained by Monte Carlo simulation with 105 samples, for a Greenshields flux with parameters
V = 80 mph and ρmax = 120 vpm (where mph and vpm respectively stand for miles per hour and vehicles
per mile), and a Riemann problem with independent uniform left and right datum centered at ρl = 30 vpm,
ρr = 90 vpm. Variances 100 and 400 are considered in Figure 2 left and right respectively. The domain
where the minimum of the weighting terms (P (ς > x

t ) and P (ς < x
t )) is non-zero characterizes the domain

D, and the locus of the mixture distribution.

Figure 2: Mixture random field: The minimum min
{
P (ς > x

t
), P (ς < x

t
)
}

is represented over space and time for
additive uniform noise with zero mean and variance 100 (left) and 400 (right). The mean of the left (resp. right)
datum is 30 vpm (resp. 90 vpm). As can be seen, the higher the variance on initial data, the less it is acceptable to
neglect the mixture nature of the random field.

The mixture nature of the random field is due to the stochastic nature of the shock wave speed. Propagat-
ing a moment-based representation of the datum, as in the case of the EKF, through the deterministic model
does not capture the mixture nature of the random field. The random field %̃t,x defined by the stochastic
initial datum and a deterministic Rankine-Hugoniot speed associated with the mean of the datum reads:

P (%̃t,x = ρ) = P (%l = ρ) 1
(
σ >

x

t

)
+ P (%r = ρ) 1

(
σ <

x

t

)
(29)

where the stochastic nature of the shock wave speed and non-independence between the datum and the shock
wave speed are neglected. The difference between the state distribution propagated in this method and the
true mixture distribution is illustrated in Figure 3, for the same model parameters and initial condition as
in Figure 2, with a variance 100 and 107 particles. Figure 3 displays distributions corresponding to positive
locations (0.01, 0.11, 0.21 miles), which corresponds to the right side of the left subfigure in Figure 2. This
is a situation in which P (ς > x

t ) < P (ς < x
t ) (more chance for the shock to be on the left than on the

right of location x at time t). This explains that the dominating mode corresponds to the right initial data.
The dominating mode is the only mode represented by the random field %̃t,x, which is accurate far from the
shock wave only. The correlation represented by the non-uniform distribution of the dominating mode is not
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captured by the random field %̃t,x. Additionally, we represent a distribution3 with same mean and variance
as the true distribution %t,x (which is the underlying principle of the UKF). This distribution (in dotted line)
exhibits a large variance which captures the variability due to the mixture nature of the true distribution.
One may note that this distribution includes negative values with non-zero probabilities, and positive values
outside of the admissible range according to the model, with non-zero probabilities.
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Figure 3: Distribution of vehicle density at different space-time locations: Probability density function of the
uncertainty %t,x on the true state (solid line), uniform probability density function with identical mean and variance
(dotted line), probability density function %̃t,x given by a deterministic shock wave speed between the left and right
stochastic initial datum (dashed line). This computation corresponds to a Greenshields fundamental diagram with
uniform initial noise of variance 100. The true shock wave is initially located at location 0 and does not move.

Remark 8. The solution to the stochastic Riemann problem given by equation (29) may be accurate if the
mixture from equation (28) is degenerate and only one mode arises on each side of the shock wave. This
is the case if the Rankine-Hugoniot speed is deterministic, which may arise in the case of specific correlated
statistics or if the solution to the Riemann problem is a contact discontinuity (e.g. in case of piecewise linear
fundamental diagrams, see Proposition 4).

Proposition 3. For a Greenshields fundamental diagram, if the left initial noise and the right initial noise

3For graphical comparison, we use the same family as the initial condition, i.e. a uniform distribution (represented in dotted
line in Figure 3).
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are such that the sum ρl + ρr is constant across all realizations ρl, ρr, then the random field %t,x is not a
mixture distribution.

Proof. The shock wave speed associated with a realizations ρl, ρr of the Riemann datum reads:

σG =
V ρl

(
1− ρl

ρmax

)
− V ρr

(
1− ρr

ρmax

)
ρl − ρr

which can be rewritten as:

σG = V − V

ρmax
(ρl + ρr)

which according to the assumption on the statistics is the same for all realizations ρl, ρr. The domain D is
thus empty, and the random field %t,x is equal to the left or right datum.

Proposition 4. For a triangular fundamental diagram, if Dl,Dr ⊆ [0, ρc] or Dl,Dr ⊆ [ρc, ρmax], the random
field %t,x is not a mixture, for almost all (t, x) ∈ R+\{0} × R.

Proof. By assumption, we have ρl < ρr for all realizations of the two distributions. If Dl ⊆ [0, ρc] and
Dr ⊆ [0, ρc], a realization σT of the shock wave speed ςT for the triangular diagram reads:

σT =
Q(ρr)−Q(ρl)

ρr − ρl
,

which can be rewritten using expression (16) and the fact that ρl ∈ Dl, ρr ∈ Dr, as:

σT =
ρl V − ρr V
ρl − ρr

= V

which yields a shock wave speed equal to the free-flow speed for all realizations. Therefore the shock wave
speed is deterministic, and the random field solution of the Riemann problem is unimodal for almost all
(t, x) ∈ R+\{0} ×R. Similarly if Dl,Dr ⊆ [ρc, ρmax], the shock wave speed is the speed of backward moving
waves w. The domain D is thus empty, and the random field %t,x is equal to the left or right datum.

Consequently, for estimation using the CTM, when the traffic state is completely in free-flow (Dl,Dr ⊆
[0, ρc]) or completely in congestion (Dl,Dr ⊆ [ρc, ρmax]), the estimate distributions on the left and on the
right do not mix and the normality assumption of the initial condition estimates propagates (this conditional
linearity of the dynamics is used by the MKF).

5.2. Mixture solutions to the Godunov scheme

In this section, we analyze numerically how the emergence of mixture distributions in the solution of
the Riemann problem for stochastic datum relates to the emergence of mixture distributions in the solution
to the Godunov scheme. The Godunov scheme computes a numerical solution to the Cauchy problem
on a discretization grid, by iteratively solving Riemann problems between neighboring cells and averaging
their solutions within each cells. Numerical estimates produced in this manner differ from the estimates
obtained by solving the Riemann problem on a continuous domain, due to numerical diffusion introduced
in the averaging step and the discrete setting. Additionally, in the intent of modeling numerical diffusion,
discretization error and inherent modeling error, it is common practice [48] to introduce an additive random
source term to the discretized PDE (18). In order to study the emergence of mixture distributions in this
context, we propose the following numerical experiments.

We consider the Greenshields fundamental diagram with parameters V = 80 mph, ρmax = 120 vpm, and
the stochastic Riemann datum (%l = N (30, 100), %r = N (90, 100)) (we truncate the normal distribution to
force its support into the admissible domain [0, ρmax] of the model). Using Monte Carlo simulations with
105 samples, we compute the (continuous) solution of the Riemann problem and the (discrete) solution of
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the Godunov scheme with Courant-Friedrichs-Lewy (CFL) [53] condition equal to one, spatially uniform left
and right realizations of initial noise, and for various discretization grid sizes and values of the model noise.

Numerical diffusion: The influence of numerical diffusion on continuous and discrete numerical esti-
mates (see Figure 4) is assessed by comparing the solution to the Riemann problem (solid line) with the
solution to the Godunov scheme on a coarse grid (6 space cells, 18 time-steps, dashed line) and on a fine
grid (12 space cells, 36 time-steps, dotted line). The Monte Carlo simulation is run with 105 samples. As
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Figure 4: Numerical diffusion: The mixture nature of the solution of the Riemann problem (solid line) is more
accurately captured by the numerical solution with low numerical diffusion (dotted line) computed on the fine grid
than by the numerical solution with high numerical diffusion (dashed line) computed on the coarse grid.

illustrated in Figure 4, comparison of the numerical solutions on different grids illustrates that diffusion in
the Godunov scheme smoothens the mixture nature of the solution to the Riemann problem. The numerical
solution exhibits two modes but due to diffusion, a non-zero probability arises between the two modes. This
illustrates that by discretization of the constitutive model, the true nature of the distribution of uncertainty
is blurred. This is not necessarily a problem if the discrete numerical model (Godunov scheme in this case)
is considered to be the physical model, i.e. is considered to represent the dynamics of the true state, as
commonly done in transportation. However, it shows the limitation of discrete approaches for estimation
with continuous physical models, such as the LWR PDE.

Model noise: We propose to compare (see Figure 5) the continuous solution to the Riemann problem
(solid line), the discrete solution to the Godunov scheme with no model noise (dotted line), and model noise
represented by a random variable N (0, 50) (dashed line), on a grid with 6 space cells, 18 time-steps. The
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Figure 5: Model noise: the probability density function of the solution of the Riemann problem is represented in
solid line, the probability density function of the solution of the Godunov scheme with no noise is represented in
dotted line, the solution of the Godunov scheme with Gaussian centered model noise with variance 50 is represented
in dashed line.

addition of a model noise term to the Godunov scheme to account for model errors leads to a reduction of
the mixture nature of the distribution solution to the stochastic Riemann problem. It induces a diffusion
of the true distribution, which contributes to further smoothen the two components of the mixture (see
Figure 5). This diffusion is more structured that pure numerical diffusion (see Figure 4), but this example
clearly advocates for noise modeling in order to account specifically for discretization error as a function of
the state and the corresponding distribution of uncertainty [44, 43, 79].

Lack of correlation: The existence of mixture distributions around the discontinuity creates a corre-
lation between the two sides of the shock wave (see Figure 6). By propagating a single component of the
mixture on each side of the shock wave, the covariance structure is misrepresented by the linearized model.
This is illustrated in Figure 6 representing the covariance structure of the estimate at time-step 20, for a
Monte Carlo simulation with 104 particles in the left sub figure, and for the linearized model in the right
sub figure. The fundamental diagram is a Greenshields fundamental diagram with parameters V = 80 mph,
ρmax = 120 vpm, and the stochastic Riemann datum corresponds to (%l = N (15, 100), %r = N (75, 100)), in
vehicles per mile. This corresponds to a shock-wave moving forward, starting at time 0 from cell 0. One
may note that due to the CFL condition, at time 20, no physical correlation can exist farther than 20 cells
around the diagonal. The block diagonal structure of the linearized model estimate at the shock wave ap-
pears clearly, whereas for the Monte Carlo simulation with 104 particles, the state error covariance matrix is
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band diagonal, which illustrates the correlation between the two sides of the shock wave due to the mixture
components. The comparison between the two figures displays the lack of correlation, across the shock, of
the covariance given by the linearized model. In the absence of correlation, measurements realized on one
side of the shock do not influence the estimate on the other side of the shock. The fact that the linearized
model overestimates the variance around cells neighboring the discontinuity location is visible from the color
scale.
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Figure 6: State error log-covariance matrix: The shock wave is located at cell 10. The logarithm of the absolute
value of the state error covariance matrix given by a Monte Carlo simulation with 104 particles (left) illustrates
significant correlation between the two sides of the discontinuity, due to the existence of mixture distributions. The
state error covariance given by a linearized model (right) is block-diagonal at the shock wave, due to the lack of
correlation between the two sides of the shock wave in the linearized model. This lack of correlation might be
problematic for estimation, because measurements might not give information across shocks.

5.3. Discussion

In this section, we discuss how the properties of the distribution of the uncertainty on the true state
solution of the Riemann problem with stochastic datum relate to the accuracy of the estimate given by
classical filters at the analysis step.

Forecast mean: The estimate given by the mean of the distribution obtained by deterministic propaga-
tion of the mean of the left and right datum (case of EKF), with additive model noise, seems biased since it
only captures one component of the mixture (see Figure 3 as well for instance). Close to the shock wave, the
diffusivity of the Godunov scheme numerically alleviates this drawback by smoothing the mixture through
diffusion. The bias at the shock wave due to mixture uncertainty is less likely to occur with sample-based
filters which implicitly consider a stochastic model through the propagation of samples by a deterministic
model (see experiments below). We reemphasize here that the true shock wave speed for Figure 3 and
Figure 4 is zero, hence the true shock wave does not move from location 0.

Forecast variance: As illustrated in Figure 3, close to the shock wave, even when the mean and the
variance of the uncertainty on the true state are propagated accurately, representing the mixture distribution
of the uncertainty by a unimodal distribution leads to considering a variance corresponding to the two modes,
hence a greater dependency on the observations at the analysis step, through an increased gain, which is due
to a poor representation of the uncertainty related to the prior distribution. On the other hand, if only a
single mode of the uncertainty is accurately captured (case of EKF), the estimate exhibits a lower variance
than the uncertainty, which is a classical cause of divergence of the filter.
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Figure 7: EKF analysis step: the analysis step at different times is represented for a stationary shock-wave at
location 20.5, between 30 vpm and 90 vpm, initial condition noise variance 100, and observation noise variance 100.
The observation is represented by a circular marker. The prior distribution of the uncertainty on the true state
obtained by Monte Carlo simulation with 105 samples is represented in solid line, the posterior distribution obtained
by Bayesian update is represented in dash-dotted line. The prior distribution given by propagation through the
linearized model is represented in dotted line, and the posterior distribution given by the analysis step of the EKF is
represented in dashed line.

22



0 50 100
0

0.05

0.1

Simulation 1 location 21

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 1 location 19

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 1 location 20

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 1 location 22

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 2 location 21

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 2 location 19

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 2 location 20

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 2 location 22

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 3 location 21

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 3 location 19

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 3 location 20

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 3 location 22

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 4 location 21

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 4 location 19

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 4 location 20

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 4 location 22

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 5 location 21

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 5 location 19

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 5 location 20

Vehicle density

P
ro

b
a

b
ilt

y

0 50 100
0

0.05

0.1

Simulation 5 location 22

Vehicle density

P
ro

b
a

b
ilt

y

Figure 8: EnKF analysis step: the analysis step at different times is represented for a stationary shock-wave at
location 20.5, between 30 vpm and 90 vpm, initial condition noise variance 100, and observation noise variance
100. The observation represented by a circular marker. The prior distribution of the uncertainty on the true state
obtained by Monte Carlo simulation with 105 samples is represented in solid line, the posterior distribution obtained
by Bayesian update is represented in dash-dotted line. The estimate distributions given by the EnKF are represented
as normal distributions with corresponding mean and variance. The prior given by propagation of 40 ensemble
members is represented as a normal distribution in dotted line, and the posterior given by the analysis step of the
EnKF is represented as a normal distribution in dashed line.
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Analysis step with mixture uncertainty: We consider the case of a stationary shock wave with
left and right initial data (%l = N (30, 100), %r = N (90, 100)), for a Greenshields fundamental diagram with
parameters V = 80 mph, ρmax = 120 vpm. The true stationary shock wave is located at location 20.5
throughout each simulation. Figure 7 and Figure 8 display the prior and posterior true uncertainty, and re-
spectively the normal distributions corresponding to the EKF estimate and the EnKF ensemble estimates4,
as well as the observations. The prior distribution of the uncertainty on the true state is computed by
Monte Carlo simulation with 105 particles, and its posterior obtained by full Bayesian update. We study the
characteristics of the analysis step of the EKF and the EnKF, at different times, with a single observation
with observation noise variance 100. The posterior computed by the analysis is not propagated further but
simply displayed. This means that each row in Figure 7 and Figure 8 corresponds to a a different value of
the true state, a different realization of the observation noise, and a single analysis step. For the sake of
comparison we always sample an observation at location 21.

The sensitivity of the filters to the observation is illustrated by the significant difference between the
prior and the posterior (respectively dotted and dashed lines), around the shock-wave, for both the EKF
and the EnKF. At the location of the observation (location 21), the prior provided by the EKF, which only
captures a single mode, is more inaccurate than the prior given by the EnKF, which can account partially
for mixture distributions representation with ensemble members. However, after analysis, the posteriors for
the two filters are very similar at the location of the observation. Away from the shock wave (location 19
and 22), it is clear that the EKF estimate exhibits a non-consistent error variance (simulations 1, 2, 3 in
particular).

The correlation across the shock wave clearly discriminates the two filters. Across the shock wave, at
location 20, the posterior given by the EKF (dashed line) is often centered on the wrong mode of the
posterior uncertainty (dash-dotted line). This is not the case for the EnKF which captures the two modes
of the mixture in most cases. When the observation corresponds to a mode of the mixture uncertainty
not well-represented by the estimate (for instance run 2, location 21 of Figure 7), it can be noted that the
posterior distribution can provide more inaccurate estimate than the prior; for instance the posterior given
by the EKF (dashed line) for run 2, location 20, is outside the range of values represented. This illustrates
the difficulty to capture true correlation induced by mixture uncertainty across the shock wave.

The mixture nature of the uncertainty is clearly reduced by the observation, however, the two modes are
still present and propagate in the posterior uncertainty (dash-dotted line at location 19 and 20 for simulation
1, location 22 for simulation 2, location 20 for simulation 3).

These numerical examples illustrate the limitations of the suboptimal MMSE estimates provided by the
EKF and EnKF, in the case of mixture distributions arising in traffic flow around shock-waves. Stochas-
tic filters such as the EnKF are more robust to the mixture nature of the uncertainty, since their sample
representation allows them to better capture the full variance of the two modes of the distribution of the
uncertainty on the true state. However, this leads to higher sensitivity of the filter and may lead to insta-
bilities at shock waves. On the other hand, deterministic filters able to capture only a single mode of the
distribution of the uncertainty on the true state exhibit a lower variance than the uncertainty, which may
cause divergence of the estimate if the models have low error terms.

6. Model non-differentiability

In this section, we show that the numerical Godunov flux defined in (18)- (19) is non-differentiable. We
prove that consequently, the discrete-time dynamics of the Godunov scheme is non-differentiable, which pre-
vents straightforward application of filtering algorithms requiring differentiability to discrete transportation
models based on the Godunov scheme.

4Even though the EnKF propagates and updates ensemble, for visual consistency in a context of minimum variance estima-
tion, and due to the low number of ensemble members used, we present the normal distribution corresponding to the ensemble
members distribution.
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6.1. Characterization of non-differentiability domain

The Godunov scheme consists of a dynamical system (18) resulting from the discretization of the transport
equation (14) where the numerical flux qG(·, ·) can be defined in a piecewise manner on regular sub-domains
in the case of a concave flux with a single maximum (19). The following proposition states the lack of
continuous differentiability at a specific boundary between two of these sub-domains.

Proposition 5. On the domain S defined as:

S =
{

(ρl, ρr) ∈ [0, ρmax]
2 | ρl < ρr and Q(ρl) = Q(ρr)

}
, (30)

the numerical Godunov flux (19) is not differentiable.

Proof. The expression of the numerical Godunov flux is given by equation (19). In each sub-domain of
definition corresponding to each line of (19), if the flux function Q(·) is differentiable, the numerical flux
qG(·, ·) is also left and right differentiable. It is straightforward to compute its left and right derivative on
each sub-domain:

∂qG
∂ρl

(ρl, ρr) =



Q′(ρl) if ρr ≤ ρl < ρc

0 if ρr ≤ ρc ≤ ρl
0 if ρc < ρr ≤ ρl{
Q′(ρl) if Q(ρl) < Q(ρr)

0 if Q(ρl) > Q(ρr)
if ρl < ρr

(31)

∂qG
∂ρr

(ρl, ρr) =



0 if ρr ≤ ρl < ρc

0 if ρr ≤ ρc ≤ ρl
Q′(ρr) if ρc < ρr ≤ ρl{

0 if Q(ρl) < Q(ρr)

Q′(ρr) if Q(ρl) > Q(ρr)
if ρl < ρr.

(32)

As indicated by the fourth case of equation (31) (or equivalently for the right derivative with the fourth case
of equation (32)), the left derivative of the numerical flux is only defined on the left and on the right of the
domain S defined by (30), with the left value being Q′(ρl) and the right value being 0. The left and right
values are equal only at the capacity point (point of maximal flux), in the case of a flux differentiable at
capacity. Since the left derivative is not differentiable on S, the numerical flux is not differentiable on its
domain of definition.

The domain of non-differentiability of the numerical Godunov scheme corresponds to the locus of sta-
tionary shock waves. In particular, the numerical Godunov flux and the discrete dynamics associated with
the Godunov scheme are differentiable at moving shock waves. In the case of discretization schemes with
higher numerical viscosity, for instance the Lax-Friedrichs numerical scheme [53], differentiability is obtained
everywhere but numerical approximation of discontinuities is less accurate.

Proposition 6. The discrete time dynamics of the Godunov scheme is non-differentiable, and in the case
of a differentiable flux function Q(·), the non-differentiability domain consists of the locus S of stationary
shock-waves.

Proof. The numerical flux is non-differentiable in the domain S defined by (30). Since it is impossible to
have at the same time (ρni−1, ρ

n
i ) ∈ S and (ρni , ρ

n
i+1) ∈ S, the discrete time dynamics defined by equation (18)

is non-differentiable. In the case of a differentiable flux function Q(·), the numerical flux is also differentiable
in all its sub-domains of definition, and it can be checked in Figure 9 that it is also continuously differentiable
at their boundaries, thus S is the non-differentiability domain of the discrete time dynamics associated with
the Godunov scheme.
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Figure 9: Locus of non-differentiability of the numerical Godunov flux: The top, middle and bottom row
respectively correspond to the Greenshields, triangular, and exponential fundamental diagram. The Godunov flux is
defined in a piecewise manner on the three sub-domains delimited by solid or dashed line. A dashed line indicates
discontinuity across the boundary of the domain, whereas a solid line indicates continuity at the boundary. The three
diagrams exhibit non-differentiability of the locus of stationary shock-waves (center and right column, oblique curve).
Additionally, the triangular diagram (middle row) exhibits non-differentiability at the critical density.
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The non-differentiability of the discrete dynamics associated with the Godunov scheme does not result
from a numerical issue but results from the structure of the solution of the continuous partial differential
equation considered. This can be verified by considering the solution to the Riemann problem in the case of
a stationary shock wave. The solution that consists of upstream and downstream densities with equal fluxes
is stationary. However, it is clear that a slight perturbation of the upstream or downstream density causes
the shock wave to propagate and the domain corresponding to the left or right initial condition to eventually
prevail, depending on the flux balance at the discontinuity.

Remark 9. In the case of non-differentiable flux functions Q(·) such as the triangular flux function or the
Smulders flux function, it is clear that the dynamics of the numerical solution is not differentiable. However,
since the flux function results from an empirical fit, the flux function can be approximated by a smooth
function with relatively small consequences. The non-differentiability described in Proposition 5 results from
the intrinsic properties of the conservation law, which can only by fixed by modifying the constitutive physical
principles of the model.

Remark 10. For junction problems modeled as the maximization of a linear objective function of the traffic
state under linear inequality constraints (see Remark 3), the optimum is always attained at a vertex of the
constraint polytopes, hence the flow through the junction is not a differentiable function of the traffic state
and the same difficulties happen there as well.

6.2. Numerical experiments

In this section, we analyze the estimation error induced by the lack of differentiability of the numerical
Godunov flux at the locus of stationary shock waves.

For clarity we present results for the case of the Greenshields flux function (15) (with parameters V = 80
mph and ρmax = 120 vpm, as in the previous section), which is differentiable on its domain of definition.
Similarly, in order to simplify the analysis, we consider only initial condition noise, drawn from i.i.d. normal
distribution N (0, 100). The model noise is considered to be 0. We use the Godunov scheme (18), with
CFL condition [53] equal to 1, and 80 cells in space. The distribution of the uncertainty on the true state
is computed using a Monte Carlo simulation with 104 particles, and the forecast moments using different
propagation models are compared against the true moments. In order to assess the accuracy of the estimate
covariance, we compute two error metrics. The error metric for the mean, in Figure 10, is the relative L2

error:
‖µe − µ‖2
‖µ‖2

where µe denotes the estimated mean using the forecast step of a model, and µ is the true forecast. The
error metric for the covariance, in Figure 11, is the relative absolute error on the error covariance trace,
defined by:

trace(|Σ̃− Σ|)
trace(Σ)

where Σ̃ denotes the estimated error covariance given by the forecast model and Σ denotes the true error
covariance.

Estimate error: The error induced by the use of a linearization method at the locus of the stationary
shock wave is illustrated in solid line in Figure 10 for the mean and in Figure 11 for the covariance, for
the use of the derivative of the numerical Godunov flux on the left at its point of non-differentiability. For
state propagation using a Monte Carlo method with 50 particles (right sub figure) or the linearized model
(right sub figure), the shock waves leads to the highest error, which is due to the fact that only entropic
shock waves are propagated by the scheme; the uncertainty associated with the initial condition propagates
toward the shock wave location. In the case of a rarefaction, the uncertainty associated with the initial
datum propagates outward, and the centered fan is deterministic.

The state error covariance given by forward simulation using the linearized dynamics diverges in time
from the covariance of the uncertainty on the true state (see Figure 11 left). In the case of a stationary shock
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wave (solid line), the divergence is slightly faster than in the case of a moving shock wave. In particular,
noting that the oscillations in the curve associated with a moving shock wave (dashed line) in Figure 10 and
Figure 11 correspond to a change of cells and that the meaningful error for this phenomenon corresponds
to the lower envelope of this curve, the divergence associated with the stationary shock wave is noticeably
greater. However, one may note that Figure 10, left, and Figure 11, left, only correspond to considering the
derivative on the left at the non-differentiability locus. Different weightings of the left and right derivative
at the non-differentiability domain might lead to better results.
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Figure 10: Mean error growth: the growth with time of the relative L2 error on the mean is represented for a
linearized model (left) and a Monte Carlo simulation with 50 particles (right). The solid line corresponds to the case
of a stationary shock wave with ρl = 30 vpm, ρr = 90 vpm, the dashed line corresponds to the case of a moving
shock wave, with ρl = 15 vpm, ρr = 75 vpm, the doted lined corresponds to the case of a rarefaction wave, with
ρl = 90 vpm, ρr = 30 vpm.
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Figure 11: Covariance error growth: the growth with time of the relative error on the error covariance trace
is represented for a linearized model (left) and a Monte Carlo simulation with 50 particles (right). The solid line
corresponds to the case of a stationary shock wave with ρl = 30 vpm, ρr = 90 vpm, the dashed line corresponds to
the case of a moving shock wave, with ρl = 15 vpm, ρr = 75 vpm, the dotted lined corresponds to the case of a
rarefaction wave, with ρl = 90 vpm, ρr = 30 vpm.
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6.3. Discussion

In this section we analyze the consequences of non-differentiability of the dynamics of the Godunov
scheme for state estimation.
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Figure 12: Posterior mean error: the mean L2 error of the posterior for 103 draws of the observation at each
location, is represented as a function of the observation location for an analysis with prior covariance obtained by
Monte Carlo simulation with 104 samples (solid line), and for an analysis with prior covariance propagated by the
linearized model (dashed line). Top, middle, and bottom row respectively correspond to observation noise standard
deviation 10, 32, 100. The prior shock wave, represented as a vertical dotted line, is located between cells 6 and 7
for all simulations. For the left, middle, right columns, the true shock wave, represented as a vertical dashed line, is
respectively located between cells 6 and 7, 3 and 4, 0 and 1.

As illustrated in Figure 10 left, the trend of the estimation error due to model nonlinearity is comparable
for the stationary shock wave (solid line) and for the moving shock wave (dashed line). This is consistent with
the fact that the propagation of the estimate mean in the linearized model does not involve differentiability.
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The error introduced is simply due to the nonlinearity of shock waves with the Greenshields flux function.
In the case of the rarefaction wave (dotted line), the estimation error is much smaller due to the entropy
condition and the fact that information propagates outward from the initial discontinuity.

For a moving shock wave (dashed line), the error exhibits a typical oscillation feature due to error of
location of the shock wave. The increasing part of the oscillation corresponds to the mixture nature of the
distribution of the uncertainty arising in the cell where the shock wave will move, hence increasing the error
with the linearized model. The decreasing part of the oscillation corresponds to the shock wave actually
propagating to the cell, and reducing the error. The finite slope on the decreasing part corresponds to the
effect of diffusion.

The non-differentiability of the numerical flux introduces an error in the error covariance which increases
with time at a rate noticeably greater than the error growth rate in the error covariance for a moving shock
wave (see Figure 11 left in which the trend of the solid line is comparable to the trend of the top of the peaks
of the dashed line).

Inaccurate estimation of the state covariance at the forecast step, depicted in Figure 11, impacts the
use of measurements at the analysis step. This is illustrated in Figure 12, in which we consider an analysis
done at time 40, for the case of the stationary shock wave, with the same parameters used in Figure 11.
We compare the posterior error covariance computed by the analysis step defined by the Kalman filter (5),
with on one hand a covariance computed by propagation of the initial condition covariance through the
linearized state model, and on the other hand a covariance computed by a Monte Carlo simulation with
104 samples. The prior means and the observations are identical for both cases, hence the discrepancy in
the posteriors is solely due to the discrepancy in the prior covariances and result from the inaccuracy of
the covariance propagated by the linearized non-differentiable model. A Monte Carlo simulation with 104

samples is considered to provide the distribution of the uncertainty on the true state.
As illustrated in Figure 12, the error associated with the prior covariance induces an error in the posterior

mean. In particular, for observations close to the discontinuity, one can note that the error in the posterior
can be higher than the prior error, which corresponds to the horizontal line. The inability to capture the
covariance structure at the shock wave, presented in the previous section, is also visible on the case of an
accurate prior (left column) with a different posterior error for observations located on the left or on the
right of the shock wave, although the problem is symmetric, as illustrated by the posterior error for the true
covariance error in that case.

The fact that the filter may diverge due to the wrong covariance structure propagation by the linearized
non-differentiable model is illustrated in Figure 13 in which we present the posterior covariance for the two
different analysis described above, on one hand with the covariance propagated by the linearized model, and
on the other hand with the covariance associated with the true distribution of uncertainty, computed using
a Monte-Carlo simulation with 105 samples and the parameters of Figure 12 left column.
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Figure 13: Posterior covariance error: the posterior covariance for the linearized model (dashed) and for the
Monte-Carlo simulation with 105 samples (solid) with respective prior covariance in circle and cross, are represented
as a function of the observation location.

For observation with low error located close to the shock wave location, the analysis can cause the
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linearized filter to diverge by introducing a covariance lower than the covariance on the uncertainty. This
echoes the analysis on the nonlinearity and the difficulty to model correctly the correlation structure at
shock waves. In particular it is clear that observations away from shock waves do not particularly improve
the estimates, and observations close to shock waves can potentially decrease the accuracy of the estimates
and performance of the filter at the next time step.

7. Conclusion

In this article, we showed that the classical scalar macroscopic traffic models based on the Lighthill-
Whitham-Richards partial differential equation exhibit fundamental dynamical properties which are not
accounted for by classical filtering methods derived from the Kalman filter. It is a problem in practice,
since these features are essential for the proper characterization of traffic flow patterns, in particular shock
waves and standing waves. We focused our analysis on the Riemann problem and studied analytically
and numerically the typical features introduced in the distribution of the uncertainty on the true state by
nonlinear and non-differentiable dynamics.

We showed analytically that the nonlinearity of traffic causes the uncertainty in the state to translate
into uncertainty in shock wave speed and location, which yields mixture distribution at the true location
of the shock wave. This is a phenomenon that the extended Kalman filter, unscented Kalman filter and
ensemble Kalman filters assumptions do not account for. We provided analytical computations of the re-
sulting errors in the estimate distributions provided by filters using either deterministic distribution moment
propagation (extended Kalman filter) or sample-based distribution moment propagation (ensemble Kalman
filter). We discussed the resulting estimation errors caused by misrepresenting the estimate as a unimodal
distribution. Numerical computations of the solution to the discretized partial differential equation using the
Godunov scheme were proposed to critically assess the validity of these conclusions for discretized models
with additional modeling error.

We proved that for differentiable fundamental diagrams, the Godunov dynamics is non-differentiable at
the locus of stationary shock waves, which may arise for all density-flow relationship which are not monotonic.
We also showed that this non-differentiability is the cause for additional estimation error when using a filter
requiring computation of the Jacobian of the dynamics (such as the extended Kalman filter).

Finally, we numerically demonstrated that some of these drawbacks of classical filters are alleviated in
the presence of large modeling errors and very limited when using the triangular fundamental diagram, and
consequently the cell-transmission model, which exhibits a piecewise linear relationship between density and
flow.

Traffic estimation heavily depends on precise model calibration, and accurate noise modeling. Our
analysis, which considered the difficulties associated with filtering for true state models, presented new
findings on the statistics of the uncertainty on the true state even with smooth and normal initial conditions.
These results illustrate that the specific properties of traffic flow may justify considering filters based not only
on the first two moments of the distribution, but on more complex distribution representations, and using
full model propagation. For different applications and depending on the volume and accuracy of trusted
measurements available, new filters able to account for these complex traffic-dependent statistics may allow
to significantly increase estimate accuracy.
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[76] X. Sun, L. Muñoz, and R. Horowitz. Highway traffic state estimation using improved mixture
Kalman filters for effective ramp metering control. In Proceedings of the 42nd IEEE Conference on
Decision and Control, pages 6333–6338, Maui, HI, 2003.

35



[77] M. Szeto and D. Gazis. Application of Kalman filtering to the surveillance and control of traffic
systems. Transportation Science, 6(4):419–439, 1972.

[78] C. Tampere and L. Immers. An extended Kalman filter application for traffic state estimation using
CTM with implicit mode switching and dynamic parameters. In Intelligent Transportation Systems
Conference, 2007. ITSC 2007, pages 209–216, Seattle, WA, 2007.

[79] O.-P. Tossavainen, J. Percelay, M. Stacey, J. Kaipio, and A. Bayen. State estimation and mod-
eling error approach for 2D shallow water equations and Lagrangian measurements. Water Resources
Research, 47(10):W10510, 2011, doi: 10.1029/2010WR009401.

[80] M. Van Aerde. Single regime speed-flow-density relationship for congested and uncongested highways.
In 74th Annual Meeting of the Transportation Research Board, Washington, DC, 1995.

[81] R. Van Der Merwe, A. Doucet, N. De Freitas, and E. Wan. The unscented particle filter.
Advances in Neural Information Processing Systems, 13:584–590, 2001.

[82] Y. Wang and M. Papageorgiou. Real-time freeway traffic state estimation based on extended Kalman
filter: a general approach. Transportation Research Part B, 39(2):141–167, 2005.

[83] Y. Wang, M. Papageorgiou, and A. Messmer. Real-time freeway traffic state estimation based on
extended Kalman filter: A case study. Transportation Science, 41(2):167–181, 2007.

[84] G. Whitham. Linear and Nonlinear Waves. John Wiley and Sons, New York, NY, 1974.

[85] N. Wiener. Extrapolation, interpolation, and smoothing of stationary time series with engineering
applications. The Technology Press of The Massachusetts Institute of Technology, Boston, MA, 1949.

[86] S. Wong and G. Wong. An analytical shock-fitting algorithm for LWR kinematic wave model embed-
ded with linear speed-density relationship. Transportation Research Part B: Methodological, 36(8):683–
706, 2002.

[87] D. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli, and A. Bayen. A traffic model for velocity
data assimilation. Applied Mathematics Research eXpress, 1(1):1–35, 2010.

[88] H. Zhang. Structural properties of solutions arising from a nonequilibrium traffic flow theory. Trans-
portation Research Part B: Methodological, 34(7):583–603, 2000.

[89] M. Zhang. A non-equilibrium traffic model devoid of gas-like behavior. Transportation Research Part
B, 36(3):275–290, 2002.

36


