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This document describes the sample implementation of an exact, grid-free
LWR PDE solver in the Matlab programming environment. The Lighthill-
Whitham-Richards Partial Differential Equation (LWR PDE) is a seminal equa-
tion in traffic flow theory. It leads to simple yet widely used traffic flow models
for highways. This package proposes a sample implementation for a LWR solver
using a new Lax-Hopf method. The LWR PDE is typically solved using the Cell
Transmission Model, a Godunov scheme, which requires a grid to compute the
solution numerically. This grid-free implementation yields faster computation
and exact results. It is publicly available for download at
http://traffic.berkeley.edu/downloads.

1 Copyright and License

By using or copying the software, the user agrees to abide by the terms of this
Agreement.

Copyright c©2010 The Regents of the University of California. All rights
reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

• Neither the name of the University of California, Berkeley nor the names
of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
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Figure 1: Plots generated by running the file script.m. Left: 2D representation
of the trajectories (black lines), along with a color representation of the density.
Right: 3D representation of the count function.

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

2 Publishing results using the software

If you publish results using the Matlab software, please refer to the following
article in your work:

P.-E. Mazaré, C. G. Claudel and A. M. Bayen. Analytical and grid-free solutions to the

Lighthill-Whitham-Richards traffic flow model. Submitted to Transportation Research, 2010.

The corresponding pdf is included in the zip file which you downloaded.

3 A sample script

This section focuses on a simple example given in the file script.m of the
package. This Matlab script calls a preexisting fundamental diagram, uses it
to solve a simple initial-boundary condition problem and outputs different plots
associated with the solution. The generated plots are shown Fig. 1.

3.1 Using a predefined fundamental diagram

Two general shapes of flux functions are built in the package: a triangular
and a Greenshields (parabolic) fundamental diagram. As the solver works only
on uniform stretches of road, the fundamental diagram is assumed to remain
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the same throughout the problem. The fundamental diagram is created at the
beginning of script.m and is then stored as an object fd.

To instantiate a Greenshields fundamental diagram with free-flow speed vf
and maximum density kappa, one calls fd=LH Greenshields(vf,kappa). Sim-
ilarly, to instantiate a triangular fundamental diagram with free-flow speed
vf, congestion wave speed w and maximum density kappa, one should call
fd=LH Tfd(vf,w,kappa).

The corresponding class definitions LH Greenshields.m and LH Tfd.m take
care of the creation of the full fundamental diagram objects, including explicit
formulations for several derived functions, such as the inverse of the fundamental
diagram. The fact that fundamental diagrams are objects inheriting from a
general fundamental diagram class enables anyone to create new fundamental
diagram classes corresponding to different fundamental diagram shapes. See
section 4 for more information regarding customized fundamental diagrams.

To define a initial and boundary condition traffic flow problem, one not only
needs to define the fundamental diagram, but also the length of the road. The
class LH general.m enables the user to encapsulate all this information in a
single object we name a problem environment. Given a fundamental diagram
fd, a minimum space index xmin and a maximum space index xmax, the call
pbEnv=LH general(fd,xmin,xmax) creates the corresponding problem environ-
ment pbEnv.

3.2 Setting initial and boundary conditions

Due to the resolution method, the package only uses the Moskowitz function
internally, and not flow or density. The natural way to impose initial and
boundary conditions is therefore by assigning the Moskowitz specific values on
the boundaries of the domain. Since most data from real-life problems do not
come as vehicle count values, helper functions were developed to be able to
assign piecewise constant initial densities and upstream and downstream flows
to the system.

Given a problem environment pbEnv, one can assign initial densities by us-
ing the command pbEnv.setIniDens([x0 x1 ... xn], [k1 k2 ... kn])
where x0 x1 ... xn are increasing values, and k1 k2 ... kn are within
the interval [0, κ]. This command assigns the constant density ki to every
point between x(i-1) and xi at time t = 0. Upstream densities can be
imposed via pbEnv.setUsFlows([t0 t1 ... tm], [q1 q2 ... qm]), with
t0 t1 ... tm increasing values and q1 q2 .. qm are within [0, qmax]: in
that case, every point belonging to the upstream boundary (x=xmin), with
time between t(i-1) and ti is assigned the constant flow qi. Similarly, for
downstream conditions, the call pbEnv.setDsFlows([t0 t1 ... tm], [q1
q2 ... qm]) will impose piecewise constant flows on the downstream bound-
ary (x=xmax). Note that the time discretizations [t0 t1 ... tm] do not need
to be identical for upstream and downstream boundary conditions.

An important thing to note about these helper functions is that they need to
be called in a particular order: as flows and densities are integrated to become
vehicle counts, the system needs to know the constant of integration. If initial
conditions are the first ones to be set, the functions will decide of an arbitrary
offset (such that the Moskowitz function is equal to 0 in (0,xmin)). In that
case, the constants for the upstream and downstream conditions are determined
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easily by the system. Imposing the value conditions in an order such that the
system cannot find the constant of integration deterministically will generate
a warning (warning: could not determine the correct offset for the
value condition.) from the solver and may lead to inconsistent results.

3.3 Solver and output

The solver is divided into two parts: the first one compares the values of all
solution components and returns the global solution at any point (t, x), along
with the index of the active solution component. Calculating the density then
requires an additional step.

The function pbEnv.explSol(t,x) calculates the global solution along with
the active solution component. It takes advantage of Matlab vectorization ca-
pabilities, which means that t and x may be vectors, or more generally matrices.
These matrices must be the same size, and the solution will be computed on
every point (t(i,j),x(i,j).

The output result of the call pbEnv.explSol(t,x) is a two-by-one cell
array. Both elements of result are matrices the same size as t and x. The first
element result{1} contains the value of the Moskowitz function at every point
(or NaN when the function is not defined at that point, such as at t < 0, before
any initial and boundary condition are active), whereas the second element
result{2} contains the index of the active boundary condition.

Densities on particular components component can be calculated by calling
pbEnv.explSol(t,x,component). This function will return a density matrix k,
also the same size as t, x and component. Flows can then be calculated using
the fundamental diagram standard functions: q=fd.flow(k).

Note that, as stated earlier, these functions take advantage of Matlab vec-
torization capabilities, and therefore yield optimal performance only when called
on matrices. Calling them inside loops may lead to disappointing computation
times.

3.4 Plotting tools

The package is provided with two basic plotting functions defined in the files
LH plot2D.m and LH plot3D.m. Both take as parameters the variables t, x, N,
k, fd which were previously defined. The first one displays vehicle trajectories
as thin black lines over a colormap of the density. The second one displays the
Moskowitz function as a three-dimensional surface. These functions were used
to generate plots for our introduction paper, and should be taken as very simple
examples of displays that can be generated from the solution of the LWR PDE.

4 Creating customized fundamental diagrams

For various reasons, the Matlab programming environment is not widely known
for its object-oriented capabilities. This package was however implemented fol-
lowing a basic object-oriented design so that users could create their own settings
easily, without interfering with the predefined classes we provide.

Fundamental diagrams are defined as classes that all inherit from the generic
LH fundDiag class. This inheritance process, noted as classdef myNewClass <
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LH fundDiag, implies that the new class should implement several functions re-
quired by the LWR solver. These functions are called flow, wspeed, R, density
and densities. For examples on how to implement these classes, see the pro-
vided LH Tfd.m and LH Greenshields.m
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