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a b s t r a c t

In this article, we propose a computational method for solving the Lighthill–
Whitham–Richards (LWR) partial differential equation (PDE) semi-analytically for
arbitrary piecewise-constant initial and boundary conditions, and for arbitrary concave
fundamental diagrams. With these assumptions, we show that the solution to the LWR
PDE at any location and time can be computed exactly and semi-analytically for a very
low computational cost using the cumulative number of vehicles formulation of the prob-
lem. We implement the proposed computational method on a representative traffic flow
scenario to illustrate the exactness of the analytical solution. We also show that the
proposed scheme can handle more complex scenarios including traffic lights or moving
bottlenecks. The computational cost of the method is very favorable, and is compared with
existing algorithms. A toolbox implementation available for public download is briefly
described, and posted at http://traffic.berkeley.edu/project/downloads/lwrsolver.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

One of the seminal traffic flow models for highways is presented in (Lighthill and Whitham, 1956) and (Richards, 1956),
and results in the so called Lighthill–Whitham–Richards (LWR) model or kinematic wave theory. Although more sophisti-
cated models of traffic flow are available, the LWR model is widely used to model highway traffic Newell (1993), Jin
(2010) and more recently for urban traffic (Geroliminis and Daganzo, 2008). The LWR partial differential equation (PDE) is
a first order scalar hyperbolic conservation law that computes the evolution of a density function (the density of vehicles
on a road section). This PDE has multiple solutions in general, among which the entropy solution (Ansorge, 1990) is recog-
nized to be the physically meaningful solution.

The LWR PDE can be numerically solved using a variety of computational methods, such as first order numerical schemes,
for instance in Godunov (1959) and Daganzo (1994, 1995). Classical numerical methods often require a computational grid,
and yield an approximate solution of the PDE. Some exceptions exist however, such as the wave tracking methods, see for
instance Henn (2003), Lu et al. (2008), Chen et al. (2009), Yadong et al. (2009), and Wong and Wong (2002). In the present
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article, we propose a new algorithm for solving the LWR PDE that does not require a computational grid, and which can be
used to compute the solutions to the LWR PDE exactly for any concave fundamental diagram, and for any piecewise constant
initial and boundary conditions.

The algorithm presented in this article uses the cumulative number of vehicles Newell (1993) function (CVN function) as an
intermediate computational abstraction. The CVN function is the integral form of the density function, and solves a
Hamilton–Jacobi (HJ) PDE (Daganzo, 2005a, 2006), while the density function itself solves the LWR PDE. As the solution
to a Hamilton–Jacobi equation with concave Hamiltonian, the CVN function can be computed at any point by minimizing
a functional (or cost function), see Daganzo (2005b) and Aubin et al. (2008) for more details. An approximate minimization
can be done numerically for example using dynamic programming (DP), which is used in Daganzo (2005a). The present article
is also based on the variational method as Daganzo (2005a), but unlike the latter, does not use a dynamic programming
approximation for solving the HJ PDE.

We assume that the data used to simulate traffic evolutions is generated by Eulerian (fixed) sensors. This measurement
data yields initial and boundary conditions, which are here assumed to be piecewise constant. Lagrangian data (originating
from mobile sensors) can also be used as internal boundary conditions (Leclercq et al., 2004). In this article, we use a semi-
analytic method to compute the solution to the LWR PDE and the corresponding HJ PDE, for any set of initial, boundary
and internal boundary conditions.

To the best knowledge of the authors, only front tracking (Lu et al., 2008; Chen et al., 2009; Yadong et al., 2009; Henn,
2003) and dynamic programming methods (Daganzo, 2005a) can compute the solutions to the LWR PDE exactly, for specific
classes of initial/boundary conditions and fundamental diagrams. The proposed method extends these computational
methods for situations in which the initial/boundary conditions are piecewise constant and the fundamental diagram is
an arbitrary concave function. Unlike the front-tracking methods, our computational method is not event-based, and can
compute the solution at any given point without any knowledge or computation of prior events. Unlike dynamic program-
ming methods used to compute the CVN function, our computational method is exact and can also compute the derivatives
of the CVN function (that is, the solution to the LWR PDE) exactly, whereas the former method require (inexact) numerical
differentiation. Most notably, the proposed method does not require to grid the space-time domain to compute the solution
at a given point provided by the user.

Note that this method could also be extended to more complex initial/boundary conditions (for instance piecewise linear
(Lu et al., 2008)), at the expense of a greater complexity. Symmetrically, we show in this article that the method can be
simplified in the case of triangular fundamental diagrams. Triangular fundamental diagrams are of great importance and
relevance for modeling and control applications, see Daganzo (1994, 2005a) for instance.

The rest of this article is organized as follows. Section 2 defines the LWR and HJ PDEs investigated in this article. Section 3
introduces the concept of partial solutions, which are used later as building blocks of the solution to the HJ PDE. In this
section, we also show that the partial solutions can be computed analytically for any concave fundamental diagram (smooth
or not). We also compute the solution to the LWR PDE on different traffic flow scenarios to illustrate the algorithm’s exact-
ness. In particular, we show that the algorithm can be extended to accommodate internal boundary conditions simulating
traffic lights or moving bottlenecks. The properties of the solution are investigated in Section 4. Finally, Section 5 presents a
fast algorithm specific to triangular fundamental diagrams, for which additional simplifications can be made.
2. Modeling

2.1. The LWR PDE

We quickly summarize standard material related to the LWR PDE and its connection to the Hamilton–Jacobi PDE through
the so-called Moskowitz equation. We consider a one-dimensional, uniform section of highway, limited by x0 upstream and
xn downstream. For a given time t 2 [0, tm] and position x 2 [x0, xn], we define the local traffic density k(x, t) in vehicles per
unit length, and the instantaneous flow q(x, t) in vehicles per unit time. The conservation of vehicles on the highway is
written as follows (Lighthill and Whitham, 1956; Richards, 1956; Garavello and Piccoli, 2006):
8x; t 2 ½x0; xn� � ½0; tm�;
@kðx; tÞ
@t

þ @qðx; tÞ
@x

¼ 0 ð1Þ
For first order traffic flow models, flow and density are related by the fundamental diagram Q: (x, t, k(x, t)) ´ q(x, t), which
is an empirically measured law (Greenshields, 1935). Through this article, we consider the homogeneous problem (Daganzo,
2006) in which the fundamental diagram is a function of density k only, i.e. q(x, t, k(x, t)) = Q(k(x, t)).

The fundamental diagram is a positive function defined on [0, j], where j is the maximal density (jam density). It ranges
in [0, qmax] where qmax is the maximum flow (capacity). It is assumed to be differentiable at 0 and j, with Q0(0) = vf > 0 the
free flow speed, and Q0(j) = w < 0 the congested wave speed (Lighthill and Whitham, 1956). We assume that the fundamen-
tal diagram is concave and continuous. Both assumptions are not dictated by physical laws but are required for the math-
ematical well-posedness of the approach. Non-concave and non-continuous fundamental diagrams are sometimes necessary
to model specific traffic patterns (Kerner and Konhäuser, 1994; Edie, 1961) but they require a separate mathematical
treatment. Examples of fundamental diagrams satisfying all the above assumptions are shown in Fig. 1.



Fig. 1. Left: Generic concave fundamental diagram. Right: Triangular fundamental diagram.
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The introduction of the fundamental diagram yields the Lighthill–Whitham–Richards (LWR) PDE:
8x; t 2 ½x0; xn� � ½0; tm�;
@kðx; tÞ
@t

þ @Qðkðx; tÞÞ
@x

¼ 0 ð2Þ
2.2. The Moskowitz function

The cumulated vehicle count N(x, t), also called Moskowitz function (Moskowitz, 1965), represents the continuous vehicle
count at location x and time t. It has been developed for instance in (Newell, 1993; Daganzo, 2005a, 2006) in the context of
transportation engineering, and goes back to (Makigami et al., 1971; Moskowitz, 1965).

In the Moskowitz framework, one assumes that all vehicles are labeled by increasing integers as they pass the entry
point x0 of a highway section, and that they cannot pass each other. If the latest car that passed an observer standing
at location x and time t is labeled n, then bN(x, t)c = n. This count function is interpolated continuously between the
discrete labels. The Moskowitz function contains traffic information that one can infer from experimental traffic mea-
surements as long as vehicles do not pass each other. In this situation, the isolines of N(x, t) correspond to vehicle
trajectories.

Moreover, local density k(x, t) and flow q(x, t) can be computed from the vehicle count using the equalities
kðx; tÞ ¼ � @Nðx; tÞ
@x

ð3Þ

qðx; tÞ ¼ @Nðx; tÞ
@t

ð4Þ
Introducing the Moskowitz function in (2) yields the Hamilton–Jacobi PDE (Newell, 1993; Daganzo, 2005a, 2006; Claudel
and Bayen, 2010a,) in which the fundamental diagram Q plays the role of Hamiltonian Evans (1998):
@Nðx; tÞ
@t

� Q � @Nðx; tÞ
@x

� �
¼ 0 ð5Þ
The above equation can be interpreted as the fundamental diagram (or flow–density relationship) defined in CVN space.
2.3. The Cauchy problem

Eq. (5) is a scalar Hamilton–Jacobi partial differential equation, which can be solved using an initial condition function
Nini(x), an upstream boundary condition function Nup(t) and a downstream boundary condition function Ndown(t). In general,
finding such solutions while enforcing arbitrary boundary conditions is impossible with experimental data because the data
is not necessarily consistent with the model, and contains measurement errors, leading to ill-posed problems. Weak bound-
ary conditions were introduced in Bardos et al. (1979), Le Floch (1988), and Strub and Bayen (2006) to resolve this problem
by integrating situations in which prescribed boundary conditions do not apply. In the context of the Hamilton–Jacobi equa-
tion, we can introduce the Cauchy problem:
8x; t 2 ½x0; xn� � ½0; tm�;

@Nðx;tÞ
@t � Q � @Nðx;tÞ

@x

� �
¼ 0

Nðx; 0Þ $ NiniðxÞ
Nðx0; tÞ $ NupðtÞ
Nðxn; tÞ $ NdownðtÞ

8>>>><>>>>: ð6Þ
where $ represents the imposition of a weak boundary condition as developed in Strub and Bayen (2006). Note that weak
boundary conditions are related to the concept of demand and supply, see for instance Daganzo (1994, 1995).
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2.4. Piecewise affine initial and boundary conditions

For the rest of the article, we use piecewise constant conditions on density and flow, which translate to piecewise-affine
conditions on the Moskowitz function. Piecewise constant conditions on density and flow are a natural way to encode dis-
crete measurements in the model, and are used in the Cell Transmission Model (CTM) (Daganzo, 1994). A graphical represen-
tation of the studied domain is shown in Fig. 2.

Let m and n P 1 be integers, x0 < x1< � � � <xn and t0 < t1< � � � <tm the space–time discretization for initial and boundary con-

ditions where t0 = 0. We assume that the initial densities kðiÞini

� �
06i6n�1

2 Rn
þ, the upstream flows qðjÞup

� �
06j6m�1

2 Rm
þ and the

downstream flows qðjÞdown

� �
06j6m�1

2 Rm
þ are given (known), as in Fig. 2. The initial densities are thus decomposed as piecewise

constant in their respective measurement intervals:
Fig. 2.
bounda
uneven
8x 2 ½xi; xiþ1½; kðx;0Þ ¼ kðiÞini ð7Þ
and let the upstream and downstream flows also be prescribed as piecewise constant:
8t 2 ½tj; tjþ1½; qðx0; tÞ ¼ qðjÞup ð8Þ

qðxn; tÞ ¼ qðjÞdown ð9Þ
Note that no assumption is made regarding the uniformity of the grid: the spacings xi � xi � 1 and ti � ti � 1 are not nec-
essarily uniform over i. The method proposed next can handle arbitrary grids and spatio-temporal discretization of the data.
However, for notational simplicity, we will not write the method in its full generality in this article. In the toolbox posted
online (refer to the link in the abstract), we have coded a general implementation of the method which takes arbitrary mea-
surement intervals [xi, xi+1] and [tj, tj+1].

The initial condition of the Moskowitz PDE is obtained by integrating the initial condition of the LWR PDE assuming that
Nini(x0) = 0 and :
8x 2 ½xi; xiþ1�; NiniðxÞ ¼ �
Z x

x0

kðv;0Þdv ¼ �
Xi�1

m¼0

ðxmþ1 � xmÞkðmÞini � ðx� xiÞkðiÞini ð10Þ
Similarly, the upstream and downstream boundary conditions of the Moskowitz PDE, assuming that Nup(0) = 0 and
Nini(xn) = Ndown(0) are given by:
8t 2 ½tj; tjþ1�; NupðtÞ ¼
Z t

0
qupðsÞds ¼

Xj�1

m¼0

ðtmþ1 � tmÞqðmÞup þ ðt � tjÞqðjÞup ð11Þ

8t 2 ½tj; tjþ1�; NdownðtÞ ¼ NiniðxnÞ þ
Z t

0
qdownðsÞds ¼ NiniðxnÞ þ

Xj�1

m¼0

ðtmþ1 � tmÞqðmÞdown þ ðt � tjÞqðjÞdown ð12Þ
The relationship between initial/boundary conditions in the density space and in the Moskowitz space is illustrated in
Fig. 3.

Note that it is possible to set a free downstream boundary condition by not defining the downstream boundary condition,
i.e. by skipping the iteration on downstream boundary conditions in Algorithm 1. An example in which the downstream
boundary is free is available in Section 3.5.
Different piecewise-constant encodings of the same noisy initial condition kini and upstream boundary condition qup. For clarity, the downstream
ry condition has not been included in this figure. Left: Example of uniformly sampled kini and qup, leading to xi = idx and tj = jdt. Right: Example of
ly spaced xi and ti.



Fig. 3. Left: Illustration of a piecewise constant initial density and upstream flow conditions. Right: Corresponding piecewise affine Moskowitz function. For
clarity, downstream boundary conditions are not shown.
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Algorithm 1. Pseudo-code implementation for the Lax–Hopf based computation of the Moskowitz function and the
associated density at a single point (x, t) prescribed by the user.
Input: x 2 [x0, xn], t 2 [0, tm],
 input space domain, time domain

iup  minði� 1Þ s:t: ti P t � x�x0

v f

number of components to compute from upstream data
idown  minði� 1Þ s:t: ti P t � xn�x
w
 number of components to compute from downstream data
jmin max(0, min(j � 1) s.t. xj P x � vft)
 min space index for influencing initial condition

jmax min(m, max(j + 1) s.t. xj 6 x � w t)
 max space index for influencing initial condition

N +1
 initialization of the Moskowitz function to infinity

for j = jmin to jmax do
 iteration on initial conditions
compute NcðjÞini
ðx; tÞ using (21)
 component induced by the initial condition cini

(j)
if NcðjÞini
ðx; tÞ < N then
 if the current component contributes to the solution
N  NcðjÞini
ðx; tÞ
 update Moskowitz function
k kcðjÞini
ðx; tÞ, computed using (22)
 compute density
end if

end for

for i = 0 to iup do
 iteration on upstream boundary conditions
compute NcðiÞup
ðx; tÞ using (24)
 component induced by the upstream boundary condition cðiÞup
if NcðiÞup
ðx; tÞ < N then
 if the current component contributes to the solution
N NcðiÞup
ðx; tÞ
 update Moskowitz function
k kcðiÞup
ðx; tÞ, computed using (25)
 compute density
end if

end for

for i = 0 to idown do
 iteration on downstream boundary conditions
compute NcðiÞdown
ðx; tÞ using (27)
 component induced by the downstream boundary condition cdown

(i)
if NcðiÞdown
ðx; tÞ < N then
 if the current component contributes to the solution
N  NcðiÞ
down
ðx; tÞ
 update Moskowitz function
k kcðiÞdown
ðx; tÞ, computed using (28)
 compute density
end if

end for N, k
2.5. Affine internal boundary conditions

While we mainly focus on Cauchy problems in the present article, the proposed algorithm can also integrate any number
of internal boundary conditions, which can be used to model fixed or moving bottlenecks (Leclercq et al., 2004). We illustrate
this by computing a traffic scenario containing one traffic light and one moving bottleneck in Section 3.5.
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An affine internal boundary condition of the Moskowitz function is defined as:
NðlÞinternðx; tÞ ¼ MðlÞ þ qðlÞinternðt � tðlÞminÞ : tðlÞmin 6 t 6 tðlÞmax and x ¼ xðlÞ þ V ðlÞinternðt � tðlÞminÞ ð13Þ
In the above formula, the internal boundary condition imposes a maximal flow of qðlÞintern on the domain defined by

tðlÞmin 6 t 6 tðlÞmax and x ¼ xðlÞmin þ V ðlÞintern t � tðlÞmin

� �
. It can represent in practice a fixed V ðlÞintern ¼ 0

� �
or a moving V ðlÞintern > 0

� �
bot-

tleneck, restricting the relative capacity of the road to qðlÞintern on its path.

3. Analytical solutions to the Moskowitz HJ PDE and LWR PDE

3.1. Solutions to the Hamilton–Jacobi equation

In order to compute the analytical solution of Eq. (6) with conditions of the type (10)–(12) or possibly (13), we define
(based on Claudel and Bayen (2010a), Aubin et al. (2008), and Daganzo (2006)) the following convex transform associated
with the fundamental diagram:
8u 2 ½w;v f �; RðuÞ ¼ sup
k2½0;j�

ðQðkÞ � u � kÞ ð14Þ
Note that R is a convex function, since it is the supremum of affine functions. The function �R is the Legendre–Fenchel
transform of the function Q (fundamental diagram).

We aggregate the initial and boundary conditions of the Cauchy problem (6) into a single value condition function c(x, t):
cðx; tÞ ¼
NiniðxÞ t ¼ 0
NupðtÞ x ¼ x0

NdownðtÞ x ¼ xn

8><>:

With this definition of initial, upstream and downstream boundary conditions, the domain of definition of c is

Dom(c) = ({x0, xn} � [0, tm]) [ ([x0, xn] � {0}).
Variational theory as known since (Angel and Bellman, 1972) is a possible method for solving the HJ PDE (5). A possible

use of variational theory is presented in Daganzo (2005b) in the context of this problem. The mathematical foundations of
variational theory can be found in Aubin et al. (2008) for the specific case of the HJ PDEs. From Aubin et al. (2008), the solu-
tion associated with the value condition function c, denoted by Nc, is the infimum of an infinite number of functions of the
value condition:
Ncðx; tÞ ¼ inffcðt � T; x� TuÞ þ TRðuÞg
s:t: ðu; TÞ 2 ½w;v f � � Rþ and ðt � T; x� TuÞ 2 DomðcÞ

ð15Þ
Eq. (15) is well known in the Hamilton–Jacobi literature and often referred to as Lax–Hopf formula (Aubin et al., 2008;
Evans, 1998). Note that it can be solved using dynamic programming methods (Daganzo, 2005b), which are proven to be
exact for homogeneous problems under two conditions: a concave, piecewise-affine fundamental diagram, and the compu-
tation of the Moskowitz function on a uniform grid (jdx, idt)i,j which has to be invariant by any translation of vector (dx, dx/wi)
for each wave speed wi (Daganzo, 2005b). These conditions can be restrictive based on the data used for practical applica-
tions since they dictate a sampling frequency. Also, they can be computationally intensive.

In this article, we present a method which guarantees an analytical solution, and has the same computational complexity
for arbitrary grids and concave fundamental diagrams. In addition, we show that this method enables us to compute the
solution to the associated Cauchy problem (6) exactly.

For this, we first decompose the piecewise affine value condition function c in affine, locally-defined value conditions in-
dexed by ini, up and down based on the condition (initial, upstream, downstream), and i or j depending on the sampling
interval:
8x 2 ½xi; xiþ1½; cðiÞiniðx;0Þ ¼ NiniðxÞ ð16Þ
8t 2 ½tj; tjþ1½; cðjÞupðx0; tÞ ¼ NupðtÞ ð17Þ

8t 2 ½tj; tjþ1½; cðjÞdownðxn; tÞ ¼ NdownðtÞ ð18Þ
where Nini, Nup and Ndown are defined in (10)–(12). One can note that the functions cðiÞini; cðjÞup and cðjÞdown are restrictions of the
piecewise-affine function c on intervals on which it is affine.

If the problem contains fixed or moving bottlenecks, we can also define a finite number of affine internal boundary con-
ditions indexed by intern and l:
8t 2 tðlÞmin; t
ðlÞ
max

h i
and for x ¼ xðlÞmin þ V ðlÞinternðt � tðlÞminÞ; c

ðlÞ
internðx; tÞ ¼ NðlÞinternðx; tÞ ð19Þ
We also define the induced solution components NcðiÞ
ini
; NcðjÞup

; NcðjÞ
down

and NcðlÞ
intern

respectively associated with (16)–(19) when

computed by (15) as follows. The induced solution components must be understood as the partial solution to a subset of the
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initial problem, since we assume that we have no information and do not impose any value on the other initial and boundary
condition domains. The contribution of the present article is the construction of the full solution of the problem from these
partial solutions.

In general, the Moskowitz function Nc, solving the HJ PDE (5) for the value condition c, cannot be computed analytically
using (15) for arbitrary piecewise affine initial, boundary and internal boundary conditions. However, the induced Mosko-
witz components defined above can be computed analytically using (15). These partial computations involve the minimiza-
tion of a convex function (Claudel and Bayen, 2010b) which we present later in the article. Using the minimum property
(Newell, 1993), also known as inf-morphism property (Aubin et al., 2008), the Moskowitz function Nc, solving the HJ PDE
(5) for the value condition c is the minimum of the induced Moskowitz components. This fundamental property (Aubin
et al., 2008) is the basis of the algorithm presented in this article.

3.2. Discussion and comparison with the variational method

The algorithm that we propose in this article is related to the variational theory introduced in Daganzo (2005a), though
the computational method is different. In Daganzo (2005a, 2006), Eq. (15) is solved numerically using dynamic programming
methods. For this, a grid is chosen, which define possible paths. Each path to a given point of the grid is associated with a
value (or cost). The solution at a given point (t, x) is the minimum cost over all possible paths originating from the initial
or boundary conditions and reaching this point.

In contrast, in this article, the solution at a given point (t, x) is the minimum of the solution components induced by the
affine initial condition blocks, the affine upstream and downstream boundary condition blocks, and the affine internal
boundary condition blocks (if any). The solution components of these affine condition blocks can all be computed explicitly
(the explicit formulas are presented in the following section). Thus, the solution at a given point (t, x) is actually the
minimum of a finite number of quantities which can all be explicitly computed (using a closed form formula).

The following table summarizes the differences between our proposed algorithm and the dynamic programming method:
Lax–Hopf algorithm
 Dynamic programming (variational
method)
Computational principle
 Minimization of closed form partial
solutions (grid-free)
Minimization of a cost function over a
computational grid
Computational cost
 Proportional to the total number of initial
and boundary condition blocks (depends
upon the complexity of the problem)
Function of the grid (depends upon the
complexity of the grid)
Exactness
 Exact solution for the Moskowitz and
density functions for piecewise affine
initial boundary and internal boundary
conditions and arbitrary concave
fundamental diagrams
Exact for piecewise affine initial and
boundary conditions and piecewise affine
fundamental diagrams. Not exact for
arbitrary concave fundamental diagrams,
and no exact computation of the density
function
Integration of internal
boundary conditions
(moving bottlenecks,
traffic lights. . .)
Straightforward (explicit formulas also
exist for internal boundary conditions)
Possible, but requires the definition of
shortcuts in the domain of the internal
boundary condition
Integration of space/time
varying fundamental
diagrams
Possible, but requires a completely new
derivation of explicit formulas for space/
time varying diagrams
Straightforward (requires the introduction
of a space or time dependent cost)
The number of operations required to compute the solution to any given point (t, x) using the proposed algorithm is pro-
portional to the number of initial and boundary conditions blocks. Thus, our proposed algorithm is more efficient than the
dynamic programming approach, which requires at least one path originating from each of the initial or boundary condition
blocks. Nevertheless, the variational method is more flexible than the proposed algorithm, and can easily compute solutions
associated with inhomogeneous problems. While our algorithm could also compute such solutions, each problem would
require the derivation of new explicit formulas.

3.3. Solution components associated with affine conditions

In this section, we use the notation Q0 for the derivative of the fundamental diagram Q and R0 for the derivative of the
convex transform R. If Q is not differentiable at a particular point k, Q0(k) can be replaced in the formulas below by the left
(or the right) derivative at k (a similar property applies to R0). Note that we have also assumed earlier that Q has a right
derivative vf in 0 and a left derivative w in j.

We now present the computation of the partial components of the solution.
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3.3.1. Initial conditions
We want to compute the solution component induced by an affine, locally defined initial condition indexed by i:
8x 2 ½xi; xiþ1�; NðiÞiniðxÞ ¼ �kixþ bi ð20Þ
with bi ¼ kixi �
Pi�1

l¼0ðxlþ1 � xlÞkðlÞi allowing for the continuity of the initial conditions in (0,xi). Using the results of Claudel
and Bayen (2010b), the analytical solution to the problem associated with (6) with this sole initial condition can be
written as
NcðiÞ
ini
ðx; tÞ ¼

tQðkiÞ � kixþ bi : xi þ tQ 0ðkiÞ 6 x 6 xiþ1 þ tQ 0ðkiÞ
tR x�xi

t

� �
� kixi þ bi : xi þ tw 6 x 6 xi þ tQ 0ðkiÞ

tR x�xiþ1
t

� �
� kixiþ1 þ bi : xiþ1 þ tQ 0ðkiÞ 6 x 6 xiþ1 þ tv f

8><>: ð21Þ

kcðiÞ
ini
ðx; tÞ ¼ �

@NcðiÞ
ini

@x
ðx; tÞ ¼

ki : xi þ tQ 0ðkiÞ 6 x 6 xiþ1 þ tQ 0ðkiÞ
�R0 x�xi

t

� �
: xi þ tw 6 x 6 xi þ tQ 0ðkiÞ

�R0 x�xiþ1
t

� �
: xiþ1 þ tQ 0ðkiÞ 6 x 6 xiþ1 þ tv f

8><>: ð22Þ
3.3.2. Upstream boundary conditions
We now compute the solution component induced by an affine, locally defined upstream boundary condition indexed by

j.
8t 2 ½tj; tjþ1�; NðjÞupðtÞ ¼ qjt þ dj ð23Þ
with dj ¼ �qjtj þ
Pj�1

l¼0ðtlþ1 � tlÞqðlÞj . Following Claudel and Bayen (2010b), we define the free flow density function Kup, which
is the inverse of the restriction of the fundamental diagram Q to the domain [0, kc]:
KupðqÞ ¼minfk 2 ½0;j�jQðkÞ ¼ qg
Using the results of Claudel and Bayen (2010b), one can prove that:
NcðjÞup
ðx; tÞ ¼

dj þ qjtjþ1 þ ðt � tjþ1ÞRð x�x0
t�tjþ1
Þ : 0 6 x� x0 6 Q 0ðKupðqjÞÞðt � tjþ1Þ

dj þ qjt � KupðqjÞðx� x0Þ : Q 0ðKupðqjÞÞðt � tjþ1Þ 6 x� x0 6 Q 0ðKupðqjÞÞðt � tjÞ

dj þ qjtj þ ðt � tjÞR x�x0
t�tj

� �
: Q 0ðKupðqjÞÞðt � tjÞ 6 x� x0 6 v f ðt � tjÞ

8>>><>>>: ð24Þ

kcðiÞup
ðx; tÞ ¼ �

@NcðiÞup

@x
ðx; tÞ ¼

�R0 x�x0
t�tjþ1

� �
: 0 6 x� x0 6 ðt � tjþ1ÞQ 0ðKupðqjÞÞ

KupðqjÞ : Q 0ðKupðqjÞÞðt � tjþ1Þ 6 x� x0 6 Q 0ðKupðqjÞÞðt � tjÞ

�R0 x�x0
t�tj

� �
: Q 0ðKupðqjÞÞðt � tjÞ 6 x� x0 6 v f ðt � tjÞ

8>>><>>>: ð25Þ
3.3.3. Downstream boundary conditions
Again, the same process can be repeated for the downstream boundary:
8t 2 ½tj; tjþ1�; NðjÞdownðtÞ ¼ pjt þ bj ð26Þ
with bj ¼ �pjtj þ Nðn�1Þ
ini ðxnÞ þ

Pj�1
l¼0ðtlþ1 � tlÞqðlÞj . In a symmetric way from the upstream case, we define the congestion density

function Kdown, which is the inverse of the restriction of the fundamental diagram Q to the domain [kc, j]:
KdownðqÞ ¼maxfk 2 ½0;j�jQðkÞ ¼ qg
Using the results of Claudel and Bayen (2010b), we can similarly prove that:
NcðjÞ
down
ðx; tÞ ¼

bj þ pjt þ KdownðpjÞðxn � xÞ : Q 0ðKdownðpjÞÞðt � tjÞ 6 x� xn 6 Q 0ðKdownðpjÞÞðt � tjþ1Þ

bj þ pjtj þ ðt � tjÞR xn�x
tj�t

� �
: wðt � tjÞ 6 x� xn 6 Q 0ðKdownðpjÞÞðt � tjÞ

bj þ pjtjþ1 þ ðt � tjþ1ÞR xn�x
tjþ1�t

� �
: Q 0ðKdownðpjÞÞðt � tjþ1Þ 6 x� xn 6 0

8>>><>>>: ð27Þ

kcðiÞ
down
ðx; tÞ ¼ �

@NcðiÞ
down

@x
ðx; tÞ ¼

KdownðpjÞ : Q 0ðKdownðpjÞÞðt � tjÞ 6 x� xn 6 Q 0ðKdownðpjÞÞðt � tjþ1Þ

�R0 x�xn
t�tj

� �
: w 6 xn�x

tj�t 6 Q 0ðKdownðpjÞÞ

�R0 x�xn
t�tjþ1

� �
: Q 0ðKdownðpjÞÞðt � tjþ1Þ 6 x� xn 6 0

8>>><>>>: ð28Þ
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3.3.4. Internal boundary conditions
In order to write the internal boundary condition component explicitly, we first have to define k1 and k2 such that k1 6 k2

and:
Qðk1Þ � k1V ðlÞintern ¼ qðlÞintern ð29Þ
Qðk2Þ � k2V ðlÞintern ¼ qðlÞintern ð30Þ
Using the results of Claudel and Bayen (2010b), we can similarly prove that:
NcðlÞ
intern
ðx; tÞ ¼

Qðk1Þ t � tðlÞmin

� �
þ ðxðlÞ � xÞk1 þMðlÞ : xðlÞ þ V ðlÞintern t � tðlÞmin

� �
6 x and

t � tðlÞmax 6
xðlÞþVðlÞ

intern
ðt�tminðlÞÞ�x

�Q 0 ðk1ÞþVðlÞ
intern

6 t � tðlÞmin

Qðk2Þ t � tðlÞmin

� �
þ ðxðlÞ � xÞk2 þMðlÞ : xðlÞ þ V ðlÞintern t � tðlÞmin

� �
P x and

t � tðlÞmax 6
xðlÞþVðlÞ

intern
t�tminðlÞð Þ�x

�Q 0 ðk2ÞþV ðlÞ
intern

6 t � tðlÞmin

MðlÞ þ t � tðlÞmin

� �
R xðlÞ�x

tðlÞ
min
�t

� �
: xðlÞ þ V ðlÞinternðt � tðlÞminÞ 6 x and

t � tðlÞmin 6
xðlÞþVðlÞ

intern
ðt�tminðlÞÞ�x

�Q 0 ðk1ÞþVðlÞ
intern

or
xðlÞ þ V ðlÞintern t � tðlÞmin

� �
P x and

t � tðlÞmin 6
xðlÞþVðlÞ

intern
ðt�tminðlÞÞ�x

�Q 0 ðk2ÞþVðlÞ
intern

qðlÞintern tðlÞmax � tðlÞmin

� �
þMðlÞþ : xðlÞ þ V ðlÞintern t � tðlÞmin

� �
6 x and

t � tðlÞmax

� �
R

xðlÞþV ðlÞ
intern

tðlÞmax�tðlÞ
min

� �
�x

tmax�t

� �
xðlÞþV ðlÞ

intern
ðt�tminðlÞÞ�x

�Q 0ðk1ÞþV ðlÞ
intern

6 t � tðlÞmax

or
xðlÞ þ V ðlÞintern t � tðlÞmin

� �
P x and

xðlÞþV ðlÞ
intern

ðt�tminðlÞÞ�x

�Q 0ðk2ÞþV ðlÞ
intern

6 t � tðlÞmax

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð31Þ

kcðlÞ
intern
ðx; tÞ ¼ �

@NcðiÞup

@x
ðx; tÞ ¼

k1 : xðlÞ þ V ðlÞintern t � tðlÞmin

� �
< x and

t � tðlÞmax 6
xðlÞþV ðlÞ

intern
ðt�tminðlÞÞ�x

�Q 0 ðk1ÞþV ðlÞ
intern

6 t � tðlÞmin

k2 : xðlÞ þ V ðlÞintern t � tðlÞmin

� �
> x and

t � tðlÞmax 6
xðlÞþV ðlÞ

intern
ðt�tminðlÞÞ�x

�Q 0 ðk2ÞþV ðlÞ
intern

6 t � tðlÞmin

R0 x�xðlÞ

t�tðlÞ
min

� �
: xðlÞ þ V ðlÞintern t � tðlÞmin

� �
< x and

t � tðlÞmin <
xðlÞþV ðlÞ

intern
ðt�tminðlÞÞ�x

�Q 0ðk1ÞþVðlÞ
intern

or
xðlÞ þ V ðlÞintern t � tðlÞmin

� �
> x and

t � tðlÞmin <
xðlÞþV ðlÞ

intern
ðt�tminðlÞÞ�x

�Q 0ðk2ÞþVðlÞ
intern

R0
xðlÞþV ðlÞ

intern
tðlÞmax�tðlÞ

min

� �
�x

tðlÞmax�t

� �
: xðlÞ þ V ðlÞintern t � tðlÞmin

� �
< x and

t � tðlÞmax >
xðlÞþV ðlÞ

intern
ðt�tminðlÞÞ�x

�Q 0 ðk1ÞþVðlÞ
intern

or
xðlÞ þ V ðlÞintern t � tðlÞmin

� �
> x and

t � tðlÞmax >
xðlÞþV ðlÞ

intern
ðt�tminðlÞÞ�x

�Q 0 ðk2ÞþVðlÞ
intern

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð32Þ
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3.4. Componentwise computation of the Moskowitz/LWR function

It is shown in Aubin (1991) and Aubin et al. (2008) that one way to express the solution of the full problem (6), taking into
account all contributions of initial and boundary conditions can be obtained by a union property of capture basins, called inf-

morphism property. The inf-morphism property applied to the functions cðiÞini

� �
i
; cðjÞup

� �
j

and cðjÞdown

� �
j

is expressed by the fol-

lowing equality:
Nðx; tÞ ¼min
i;j

NcðiÞ
ini
ðx; tÞ;NcðjÞup

ðx; tÞ;NcðjÞ
down
ðx; tÞ

� 	
ð33Þ
This last result is fundamental: it shows that in order to solve the HJ PDE, we only have to apply the formulas above (21),
(24), and (27) for each affine piece of initial and boundary condition, which will give the associated solution component, and
then compute the minimum of all results.

Integrating internal boundary conditions into the problem follows similarly, by more the corresponding solution compo-
nents into Eq. (33).

3.5. Implementation

We summarize the proposed method for the computation of the Moskowitz function in the algorithm labeled Algorithm
1. The algorithm supposes the knowledge of the value conditions kðiÞini; qðjÞup; qðjÞdown and their boundaries xi, tj. Note that in order
to preserve the exactness of the algorithm (i.e. the analytical expression of the solution), we also need the explicit expres-
sions of the following functions:

� Fundamental diagram Q(k).
� Derivative of the fundamental diagram Q0(k).
� Convex transform R(v).
� Derivative of the convex transform R0(v).
� Exact solutions k1 and k2 to QðkÞ � kV ðlÞintern ¼ qðlÞintern, where V ðlÞintern and qðlÞintern are given (this is required only if the problem

contains internal boundary conditions).

As mentioned earlier, the functions Q and R may be non-differentiable at a finite number of points. In practice, the func-
tion Q0 can be defined as any function comprised between the right and left derivatives (which are defined everywhere) of Q,
and similarly for R0 (any function comprised between the left and right derivatives of R). These choices do not influence the
solution in practice: they will only modify the value of the computed solution to the LWR problem at points for which the
true solution is discontinuous anyway (and thus has no definite value).

As can be seen from the implementation of Algorithm 1 posted online (refer to the link in the abstract), all what is
required is to define the five above functions analytically, and to prescribe the data at [x0, x1], . . . , [xn � 1, xn] and
[t0, t1], . . . , [tm � 1, tm] and the point (x, t) where one wants to compute the solution. The implementation of Algorithm 1 con-
tains numerical examples involving the Greenshields flux function and the triangular flux function.

In the following sections, we illustrate the capabilities of the algorithm on three different examples. The first example
deals with a free downstream boundary condition problem, using a Greenshields fundamental diagram. The second example
shows how the algorithm can integrate internal boundary conditions (moving and fixed bottlenecks), using a triangular fun-
damental diagram. The third example deals with the same internal boundary condition problem, solved using a more general
piecewise quadratic and non-differentiable fundamental diagram.

3.5.1. Example 1: Initial-boundary conditions and Greenshields fundamental diagram
The performance of the algorithm is illustrated for an arbitrary set of numerical values, summarized in the tables below.

The NaN for the downstream boundary encodes the fact that the downstream boundary is free in this example.
The solution of the Cauchy problem associated with these value conditions and a Greenshields fundamental diagram
(Greenshields, 1935; Garavello and Piccoli, 2006): Q(k) = k vf(1 � k/j), with vf = 30 m/s the free-flow speed and j = .1 veh/
m the maximum density, is represented in Fig. 5.



Fig. 4. Illustration of the domains of influence of initial, boundary and internal boundary conditions.
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3.5.2. Example 2: Moving and fixed bottlenecks and triangular fundamental diagram
Another example is illustrated below to show the capability of our algorithm to compute the solution of an arbitrary

problem along with internal boundary conditions. In this problem, we use the following initial and boundary conditions:
For this problem, we consider a triangular fundamental diagram as defined in Section 5.1, with vf = 30 m/s as the free-flow

speed, j = .1 veh/m as the maximum capacity, and w = �5 m/s as the congested wave speed. The solution of the Cauchy
problem associated with these value conditions is represented in the upper part of Fig. 6.

We then add an arbitrary moving bottleneck to the problem. The moving bottleneck is initially located at x(1) = 600 m and
is active between times tð1Þmin ¼ 10 s and tð1Þmax ¼ 15 s, moving at a speed of 6 m/s, and allowing a passing rate of 0.002 veh/s. We
show the exact solution after adding this internal boundary condition in the lower part of Fig. 6. Another example of internal
boundary condition is a fixed red traffic light located at xð2Þmin ¼ 800 m, active between times tð2Þmin ¼ 15 s and tð2Þmax ¼ 20 s is
shown in the upper part of Fig. 7. As a final illustration, the solution for the combination of initial, boundary and both internal
boundary conditions is also presented in the lower part of Fig. 7.

3.5.3. Example 3: Moving and fixed bottlenecks and piecewise quadratic fundamental diagram
A third example is added to show the capability of our algorithm to compute the solution of an arbitrary problem along

with internal boundary conditions for a piecewise quadratic and non-differentiable fundamental diagram defined as follows:
QðkÞ ¼ �600k2 þ 30k if 0 < k < kc

�5kþ 0:5 if kc < k < kmax

(
ð34Þ



Fig. 5. Exact solution to an arbitrary set of initial and value conditions (Example 1), using a Greenshields fundamental diagram. Left: Three-dimensional
representation of the count function. Right: Two-dimensional plot of the density and associated trajectories.

Fig. 6. Exact solution to an arbitrary set of initial and boundary conditions (Example 2), using a triangular fundamental diagram. Left: Three-dimensional
representation of the count function. Right: Two-dimensional plot of the density and associated trajectories.

Fig. 7. Exact solution to an arbitrary set of initial, boundary and internal boundary conditions, using a Triangular fundamental diagram. In this example, we
use the initial and boundary conditions of Fig. 6, and add two internal boundary conditions. The first is located between 600 m and 630 m, covering the
period between 10 s and 15 s and allowing a maximal passing rate of 0.002 veh/s. The second one simulates a red traffic light located at 800 m and active
between 15 s and 20 s. Left: Three-dimensional representation of the count function. Right: Two-dimensional plot of the density and associated trajectories.
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The fundamental diagram (34) is illustrated in Fig. 8. For this particular example, we use the exact same initial, boundary
and internal boundary conditions as in Example 2. The solution associated with the piecewise quadratic and non-
differentiable fundamental diagram (34) is presented in Fig. 9.



Fig. 8. Piecewise quadratic and non-differentiable fundamental diagram used for the computation of Example 3. This function is defined by
Q(k) = �600k2 + 30k, for 0 6 k 6 kc and by Q(k) = �5k + 0.5, for kc 6 k 6 kmax.

Fig. 9. Exact solution to the arbitrary set of initial, boundary and internal boundary conditions of Example 3, using the piecewise quadratic and non-
differentiable fundamental diagram (34) shown in Fig. 8. For this figure, we reuse the same initial, boundary and internal boundary conditions as in Fig. 7.
Left: Three-dimensional representation of the count function. Right: Two-dimensional plot of the density and associated trajectories.
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4. Properties of the solution

4.1. Interpretation and analysis of the solution

4.1.1. Structure
Each solution component NcðiÞ induced by a value condition c(i) is defined in the convex domain:
Dom NcðiÞð Þ ¼ ½x0; xn� � ½0; tm� \ fðxþ vdt; t þ dtÞjdt P 0; v 2 ½w;v f �; ðx; tÞ 2 DomðcðiÞÞg ð35Þ
which is the union of all areas that are attainable by a characteristic starting from any point (x, t) of the value condition do-
main, and at an information propagation speed v 2 [w, vf], sometimes also referred to as the reachable set. In Eq. (35), c(i) can
encode either an initial, upstream, downstream or internal component. The reachable sets associated with the possible value
conditions are represented in Fig. 4.

A solution component induced by an affine value condition generally consists of fans and domains of characteristics. An
initial or boundary condition component contains two fans and one domain of characteristics. An internal boundary condi-
tion component contains three fans and two domains of characteristics.

For instance, a solution component induced by an initial condition associated with the density ki has the following
structure:

� The forward fan: this characteristic fan starts at the most downstream point of the initial condition. Shaped as a cone, it
propagates at speeds v 2 [Q0(ki), vf]. It is a transition area where, on a given trajectory, the vehicle speeds go from the
vehicle speed imposed by the initial condition to the free flow speed, while the density decreases.
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� The characteristic domain: this domain propagates at a speed Q0(ki). In this area, vehicle speed and density are constant
and match those imposed by the initial condition.
� The backward fan: this wave starts at the most upstream point of the initial condition. Shaped as a cone, it propagates at

speeds v 2 [w, Q0(ki)]. It is a transition area where, on any given trajectory, the vehicle speed goes from zero to the vehicle
speed imposed by the initial condition, while the density decreases.

The other solution components have a similar structure. The general structure of the solution components induced by
affine initial, boundary and internal boundary conditions is represented in Fig. 10.
4.1.2. Flows and speeds associated with the solution components
Spatial derivatives are bounded, as shown by the analytical calculation of the densities in (22), (25), (28). From these

equations, one can also obtain the flow and speed by using the classical formulas: q(x, t) = Q(k(x, t)) and
Fig. 10
compon
Solutio
vðkÞ ¼
QðkÞ

k if 0 < k 6 j
Q 0ð0Þ if k ¼ 0

(

Note that the results of these inversions are only as good as the approximation used for the fundamental diagram. In
particular, the fundamental diagram sometime fails to capture the variability of traffic in congestion (Blandin et al., 2011;
Varaiya, 2005).

The convexity of the solution components has been proved in Claudel and Bayen (2010b). Each solution component is
Lipschitz-continuous as long as the initial and boundary conditions are such that the imposed densities are positive and be-
low the maximum density, and the imposed flows are positive and below the maximum flow. One can also note that as long
as these conditions are met, the solution only exhibits positive flows. These conditions are equivalent to the well-posedness
conditions introduced in Daganzo (2006).
. Structure of the different induced value condition components. Top left: Solution component induced by an initial condition. Top right: Solution
ent induced by an upstream boundary condition. Bottom left: Solution component induced by a downstream boundary condition. Bottom right:

n component induced by an internal boundary condition.
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4.2. Lipschitz-continuity of the solution

The Cauchy problem associated to the LWR PDE (6) is called a well-posed problem if the initial densities and upstream and
downstream flows lie within their physically-imposed limits:
0 6 kðiÞini 6 j ð36Þ
0 6 qðjÞup 6 qmax ð37Þ

0 6 qðjÞdown 6 qmax ð38Þ
The Lipschitz-continuity of the solution to such problems is proven in Appendix A for initial-boundary condition prob-
lems. Interestingly, this proof relies solely on the form of the solution and not on the LWR PDE (though obviously the solution
encodes the PDE in its structure). The interpretation is that despite the fact that the solution components are irregularly
shaped, they are never strictly below the neighboring components on the edges of their domain of definition. This means
that the solution has to be continuous, and the associated flow and density are respectively in [0, qmax] and [0, j].

As will be seen later, considering only well-posed problems allows for simplifications in the computation of the solution
by reducing the number of solution components to consider during the computation.

4.3. Comparison with other numerical schemes

Our proposed method comes with several benefits: as a grid-free method, it does not require any intermediate com-
putations (small steps) in order to give a forecast of the future traffic state. In general, for finite differences methods
such as the CTM or the Godunov scheme, the constraint on the time-space grid spacing dt, dx is defined by the CFL con-
dition: dx

dt P supkjQ
0ðkÞj. Variational theory has an inverse constraint: computational accuracy is maximized for large time

steps.
Gridless methods such as wave-tracking methods or the proposed method have no such constraints, and their complexity

is problem-dependent. A simple problem with few initial-boundary conditions will be computed faster than a more complex
problem with a large number of initial-boundary conditions. However, both methods have distinct computational costs. Our
algorithm (as presented in Algorithm 1) requires ni + nu + nb operations to compute the solution in one point (where ni is the
number of initial condition blocks, nu is the number of upstream condition blocks, and nd is the number of downstream con-
dition blocks). In contrast, the wave-tracking method will compute the evolution of at least ni + nu + nb waves and their inter-
sections. In addition, the number of waves will also depend upon the complexity of the fundamental diagram. For instance, a
fundamental diagram with a large number of ‘‘pieces’’ will require more waves to be generated (and thus a higher compu-
tational time), while the algorithm we propose in this article has a number of operations independent of the fundamental
diagram. The complexity of the wave-tracking algorithm will also depend upon the number of shockwaves generated by
the data, which cannot be known in advance.

While the proposed algorithm has a lower complexity than wave-tracking algorithms for computing the solution at one
point, this does not imply that our algorithm is faster for computing the solution on the full computational domain. Indeed,
the wave tracking algorithm computes the solution on the full domain [0, t] � [x0, xn] in order to compute the solution at one
point (t, x).

The main advantages and disadvantages of the main computational methods used for solving the LWR equation are sum-
marized below:
Lax–Hopf algorithm
 Variational method
 Godunov scheme
 Wave-front tracking
Computational
principle
Minimization of
closed form partial
solutions
Minimization of a
cost function over a
computational grid
First order finite
differences
scheme
Event-based scheme
Main advantages
 Exact for general
concave fundamental
diagrams. Very fast for
computing the
solution at one
particular point (or on
a small domain).
Recomputing the
solution after adding a
fixed or moving
bottleneck is very fast
Exact for some
classes of
fundamental
diagrams. Ability to
use space or time
dependent
fundamental
diagrams. Ability to
use fixed or moving
bottlenecks
Easiness of
implementation,
natural extension
to networks.
Ability to use
space or time
dependent
fundamental
diagrams
Exact for some classes
of fundamental
diagrams. Ability to
use non-concave or
non-continuous
fundamental
diagrams. Performs
well for computing
the solution on a full
space-time domain.
Extends naturally to
networks
(continued on next page)
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. 11. Three-dimensional re
t: Solution component ind
lution component induced
Lax–Hopf algorithm
presentations of the solution com
uced by a congested initial cond
by an upstream boundary condit
Variational method
ponents induced by local affine
ition. Top right: Solution comp
ion. Bottom right: Solution com
Godunov scheme
value conditions, for a trian
onent induced by a free-flow
ponent induced by a downst
Wave-front tracking
Main
disadvantages
Inability to use space
or time dependent
fundamental
diagrams. Results are
not exact for networks
(unless event-based
algorithms are used)
Slower than the Lax–
Hopf algorithm
(requires in the best
case the same
number of
operations as the
Lax–Hopf
algorithm). No exact
derivation of the
density function
Not exact. Limited
by the CFL
condition. Adding
moving
bottlenecks is
difficult
Difficulty to predict
the computational
time in advance. Can
be very slow if the
fundamental diagram
contains a large
number of pieces
4.4. A word on Lagrangian coordinates

The proposed algorithm can be easily extended to problems in Lagrangian coordinates (Daganzo, 2006). Traffic flow prob-
lems in Lagrangian coordinates involve an Hamilton–Jacobi equation with a concave Hamiltonian, for which the solution can
also be expressed semi-analytically (for piecewise affine initial and boundary conditions). Extending the proposed algorithm
to Lagrangian coordinates amounts to performing a variable change, available for instance in Leclercq et al. (2007).

5. Faster algorithm for triangular fundamental diagrams

5.1. Modeling

The triangular fundamental diagram Q is defined by:
QðkÞ ¼
v f k : x 2 ½0; kc�
wðk� jÞ : x 2 ½kc;j�

�

gular fundamental diagram. Top
initial condition. Bottom left:

ream boundary condition.
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where
Fig. 12.
curves
conditio
conditio
kc ¼
�wj

v f �w
is the density corresponding to the maximum capacity. This fundamental diagram is graphically represented in Fig. 1. The
calculation of its convex transform R using (14) yields:
8u 2 ½w;v f �;RðuÞ ¼ kcðv f � uÞ
Owing to the simplicity of the triangular fundamental diagram and its convex transform, the solution components asso-
ciated with affine internal and boundary conditions can be calculated explicitly and lead to an even simpler set of results: for
an initial condition Nini

(i) as defined in (20), plugging the explicit convex transform into (21) yields two cases:
If 0 6 ki 6 kc, the initial condition imposes a free-flow state.
NcðiÞ
ini
ðx; tÞ ¼

ðiÞ kiðtv f � xÞ þ bi : xi þ tv f 6 x 6 xiþ1 þ tv f

ðiiÞ kcðtv f � xÞ þ bi þ xiðkc � kiÞ : xi þ tw 6 x 6 xi þ tv f

�
ð39Þ
else, if kc < ki 6 j, the initial condition imposes a congested state:
NcðiÞ
ini
ðx; tÞ ¼

ðiÞ kiðtw� xÞ � jtwþ bi : xi þ tw 6 x 6 xiþ1 þ tw

ðiiÞ kcðtw� xÞ � jtwþ xiþ1ðkc � kiÞ þ bi : xiþ1 þ tw 6 x 6 xiþ1 þ tv f

�
ð40Þ
For an upstream boundary condition NðjÞup as defined in (23), the solution component is expressed by:
NcðjÞup
ðx; tÞ ¼

ðiÞ dj þ qj t � x�x0
v f

� �
: x0 þ v f ðt � tjþ1Þ 6 x 6 x0 þ v f ðt � tjÞ

ðiiÞ dj þ qjtjþ1 þ kcððt � tjþ1Þv f � ðx� x0ÞÞ : x0 6 x 6 x0 þ v f ðt � tjþ1Þ

8<: ð41Þ
Two-dimensional representations of the solution components induced by local affine value conditions, for a triangular fundamental diagram. Black
represent isovalues of the Moskowitz function, and therefore vehicle trajectories. Top left: Solution component induced by a congested initial
n. Top right: Solution component induced by a free-flow initial condition. Bottom left: Solution component induced by an upstream boundary
n. Bottom right: Solution component induced by a downstream boundary condition.
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For a downstream boundary condition NðjÞdown as defined in (26), the solution component is expressed by:
NcðjÞ
down
ðx; tÞ ¼

ðiÞ bj þ pjt �
pj

w þ j
� �

ðxn � xÞ : xn þwðt � tjÞ 6 x 6 xn þwðt � tjþ1Þ
ðiiÞ bj þ pjtjþ1 þ kcððt � tjþ1Þv f þ xn � xÞ : xn þwðt � tjþ1Þ 6 x 6 xn

(
ð42Þ
The solution components associated with affine initial and boundary conditions are illustrated in Figs. 11 and 12.
One can note that all solution components consist of two planar portions. The first one, numbered (i) in the solution com-

ponent equations, is the characteristic domain as defined in Section 4.1.1, and is shaped as a trapezoid. The second one, noted
(ii) in the same equations, is cone-shaped, and can represent either an expansion or a rarefaction wave. The characteristic
domain propagates directly the density information from the value condition, at a characteristic speed vf in free flow or w
in congestion. On the cones, the density is the critical density and the flux is the maximum flux. An interesting point is that
this does not depend on whether the cone is part of an expansion or a rarefaction wave. From a mathematical perspective,
this comes from the linearity of R, and its constant derivative.

The algorithm we previously described would still be exact using these simplified formulas for the solution components.
Nevertheless, the piecewise-linear shape of the solution components allows us to do several simplifications which yield
noticeable improvements for the algorithmic complexity. Our approach to a fast algorithm has some similarities to what
has been developed for the variational theory of traffic flow (Daganzo, 2005a): in particular, one can note that for a triangular
fundamental diagram, the Lax–Hopf formula can be simplified to become the minimum of two elements, each of them rep-
resenting a different information propagation speed. This remark yields considerable improvements for the computation of
the Moskowitz function.

5.2. Fast algorithm for well-posed problems

One can note two important properties of the solution components calculated previously

� The characteristic domains always propagate between speeds vf and w.
� The maximum capacity cones are all parts of parallel plans, since their gradient is (vfkc, �kc), and extend at any speed

u 2 [w, vf].

These properties allow us to restrict the number of solution components we have to compute the Moskowitz function in
one point (x, t). Indeed, if the problem is well posed, the maximum capacity cones bring limited information since they all are
parallel. Thus, we only have to compute the characteristic domains, which restricts the number of value conditions to inspect
to two. This simplification yields Algorithm 2, which requires only ni + 2 operations (where ni is the number of initial
condition blocks) to compute the solution at one point, while the general algorithm (valid for all fundamental diagrams) pre-
sented in Algorithm 1 requires ni + nu + nd operations (where nu and nd are the number of upstream and downstream bound-
ary condition blocks respectively).

Algorithm 2. Pseudo-code implementation for the Lax–Hopf based computation of the Moskowitz function and the
associated density at a single point (x, t) for a triangular fundamental diagram.
Input: t 2 [0, tn], x 2 [x0, xm]

N +1 n o

iup  max ijti 6 T � X�x0

v f
 �
 time index for influencing upstream boundary condition
idown  max ijti P T � xn�X
w

time index for influencing downstream boundary condition
jmin min{j � 1jxj P X � vfT}
 space index for influencing initial condition

jmax max{j + 1jxj 6 X � w T}
 space index for influencing initial condition

if iup – �1 then
 if at least one upstream condition influences (x, t)
compute N
c
ðiup Þ
up ðx;tÞ using (41)
 component induced by the upstream condition cðiupÞ

up
if N < N
c
ðiup Þ
up
ðx; tÞ then
 if the current component contributes to the solution
N  N
c
ðiup Þ
up
ðx; tÞ
 update Moskowitz function
k k
c
ðiup Þ
up
ðx; tÞ, computed using (25)
 compute density
end if

end if

if idown – �1 then
 if at least one downstream condition influences (x, t)
compute N
c
ðidown Þ
down

ðx; tÞ using (42)
 component induced by the downstream condition cðidownÞ
down
if N < N
c
ðidown Þ
down

ðx; tÞ then
 if the current component contributes to the solution
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N  N
c
ðidown Þ
down

ðx; tÞ
 update Moskowitz function
k k
c
ðidown Þ
down

ðx; tÞ, computed using (28)
 compute density
end if

end if

for jmin 6 j 6 jmax do
 iteration over initial conditions
compute NcðjÞini
ðx; tÞ using (39) or (40)
 component induced by the initial condition cini

(j)
if N < NcðjÞini
ðx; tÞ then
 if the current component contributes to the solution
N  NcðjÞini
ðx; tÞ
 update Moskowitz function
k kcðjÞini
ðx; tÞ, computed using (22)
 compute density
end if

end for N, k
6. Conclusions

This article develops an analytical expression of the entropy solution of the Lighthill–Whitham–Richards partial differen-
tial equation with an arbitrary flow–density relationship, and with piecewise constant initial, boundary and internal bound-
ary conditions. The analytical nature of the solution enables the construction of algorithms for exact solutions of the partial
differential equation (up to machine accuracy) without numerical discretization error. The procedure is straightforward to
implement, and has a low computational cost. It enables the computation of the solution at user prescribed points without
gridding the space–time domain. We show that this method enable us to derive classical results for the density function and
the cumulative number of vehicles function (its integral form). For the specific case of triangular flow–density relationships,
we show that the proposed method can be reduced to a simpler and faster algorithm. Future work will deal with the use of
the method for traffic flow estimation and/or control, for which some preliminary results have already been obtained
(Claudel and Bayen, 2011) in the context of Lagrangian sensing.
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Appendix A. Lipschitz-continuity of the solution

Lemma A.1. Let f, g: A ´ B be two Lipschitz-continuous functions. Then h: x ? min{f(x), g(x)} is Lipschitz-continuous on A.
Proof. We remark that 2 �min(a, b) = a + b � ja � bj, therefore h is a linear combination of Lipschitz-continuous functions.
Hence, it is Lipschitz-continuous. h

For notational convenience in the appendix, we use c(i) as a generic notation for cðiÞini; cðjÞup; cðjÞdown through this appendix.

Definition A.2. Let NcðiÞ be a solution component. We define the upper-boundary extension dNðiÞ of NcðiÞ the following way: If
NcðiÞ is a component induced by an initial boundary condition as defined in (10), i.e. cðiÞ ¼ cðiÞini, then
dNcðiÞ ðx; tÞ ¼
NcðiÞ ðx; tÞ : if ðx; tÞ 2 DomðNðiÞÞ
NcðiÞ ðxiþ1 þ tv f ; tÞ : if x > xiþ1 þ tv f

NcðiÞ ðxi þ tw; tÞ þ ðxi þ tw� xÞj : if x < xi þ tw

8><>: ð43Þ
If NcðiÞ is induced by an upstream boundary condition as defined in (11) i.e. cðiÞ ¼ cðiÞup, then
dNcðiÞ ðx; tÞ ¼
NcðiÞ ðx; tÞ : if ðx; tÞ 2 Dom NcðiÞð Þ
NcðiÞ x; ti þ x�x0

v f

� �
: if ðx; tÞ R Dom NcðiÞð Þ

(
ð44Þ
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If NcðiÞ is induced by a downstream boundary condition as defined in (12) i.e. cðiÞ ¼ cðiÞdown, then
dNcðiÞ ðx; tÞ ¼
NcðiÞ ðx; tÞ : if ðx; tÞ 2 Dom NcðiÞð Þ
NcðiÞ x; ti þ x�xn

w

� �
þ ti þ x�xn

w � t
� �

qmax : if ðx; tÞ R Dom NcðiÞð Þ

(
ð45Þ
The interpretation of the upper-boundary extensions is as follows. Downstream from the free flow characteristic line, the
solution component is extended with isolines parallel to the x axis, which corresponds to no cars added downstream. Up-
stream from the characteristic line with slope w emanating from (xk, 0), the solution component induced by an initial con-
dition cðkÞini is extended so that the corresponding density is the jam density j at any time. Similarly, the solution component
induced by a downstream condition is extended so that the corresponding flow is the maximum flow qmax. Note that these
two parts of the upper-boundary extensions do not satisfy the Hamilton–Jacobi PDE. This mathematical argument does not
pose any problem since another component will fill the corresponding area, with a smaller value (the extension on this side
of the domain is only required for the mathematical proof of Lipschitz-continuity). Thus, by the Lax–Hopf formula, the
extensions do not change the nature of the solution. One can note that every function dNcðiÞ is designed to be defined and
Lipschitz-continuous on the entire domain [x0, xn] � [0, tm], and to coincide with NcðiÞ when the latter is defined.
Lemma A.3.
8x 2 ½x0; xn�; 8t 2 ½0; tm�; min
06i<n

dNcðiÞ
ini
ðx; tÞ ¼ min

i s:t:06i<n and ðx;tÞ2 Dom ðN
cðiÞ

ini

Þ
NcðiÞ

ini
ðx; tÞ ð46Þ
Proof. Let x 2 [x0, xn],t 2 [0, tm] be fixed for the entire proof. We define rmin = max{kjxk 6 x � vft} and rmax =
max{kjxk 6 x � wt}, then 8r 2 frmin; . . . ; rmaxg; ðx; tÞ 2 Dom ðNcðrÞ

ini
Þ: thus every point (x, t) lies in the domain of at least one

solution component induced by an initial condition.

The Lax–Hopf formula (15) gives
NcðkÞ
ini
ðxk þ tw; tÞP Ncðk�1Þ

ini
ðxk þ tw; tÞ ð47Þ
as long as xk + tw 2 [x0, xn] and t 2 [0, tm]. This is due to the fact that the point (xk + tw, t) can be reached by more than one
characteristic induced by cini

(k � 1).
Let k > rmax, then we have x < xk + tw and ðx; tÞ R Dom NcðkÞini

� �
. In respective order, the definition of the upper-boundary

extension, the property (47), the fact that Ncðk�1Þ
ini
ðxk þ tw; tÞ ¼ dNcðk�1Þ

ini
ðxk þ tw; tÞ, and that dNcðk�1Þ

ini
ð�; tÞ is j-Lipschitz, yield
dNcðkÞ
ini
ðx; tÞ ¼ NcðkÞ

ini
ðxk þ tw; tÞ þ ðxk þ tw� xÞj P Ncðk�1Þ

ini
ðxk þ tw; tÞ þ ðxk þ tw� xÞj P dNcðk�1Þ

ini
ðxk þ tw; tÞ þ ðxk þ tw� xÞj

P dNcðk�1Þ
ini
ðx; tÞ
Therefore 8k > rmax; dNcðkÞ
ini
ðx; tÞP dNcðk�1Þ

ini
ðx; tÞ. By induction on k, and using the fact that dNcðrmax Þ

ini
ðx; tÞ ¼ Ncðrmax Þ

ini
ðx; tÞ because

ðx; tÞ 2 Dom Ncðrmax Þ
ini

� �
,

min
rmax6i<n

dNcðiÞ
ini
ðx; tÞ ¼ Ncðrmax Þ

ini
ðx; tÞ ð48Þ
The Lax–Hopf formula (15) also gives
Ncðk�1Þ
ini
ðxk þ tv f ; tÞP NcðkÞ

ini
ðxk þ tv f ; tÞ ð49Þ
Let k 6 rmin such that ðx; tÞ R Dom Ncðk�1Þ
ini

� �
, then x > xk + tvf. Similarly as for the first case, the definition of the upper-bound-

ary extension, the property (49), the fact that dNcðkÞ
ini
ð�; tÞ is a decreasing function, respectively give the following set of

inequalities.
dNcðk�1Þ
ini
ðx; tÞ ¼ Ncðk�1Þ

ini
ðxk þ tv f ; tÞP NcðkÞ

ini
ðxk þ tv f ; tÞP dNcðkÞ

ini
ðxk þ tv f ; tÞP dNcðkÞ

ini
ðx; tÞ
Therefore 8k 6 rmin; dNcðk�1Þ
ini
ðx; tÞP dNcðkÞ

ini
ðx; tÞ. By induction on k, and using the fact that dN

c
ðrmin Þ
ini

ðx; tÞ ¼ N
c
ðrmin Þ
ini

ðx; tÞ because

ðx; tÞ 2 Dom N
c
ðrmin Þ
ini

� �
,

min
06i6rmin

dNcðiÞ
ini
ðx; tÞ ¼ N

c
ðrmin Þ
ini

ðx; tÞ ð50Þ
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Since 8k 2 frmin; . . . ; rmaxg; ðx; tÞ 2 Dom NcðkÞ
ini

� �
, Eqs. (48) and (50) give:
9r 2 frmin; . . . ; rmaxg : NcðrÞ
ini
ðx; tÞ ¼ min

06i6n
dNcðiÞ

ini
ðx; tÞ
This last equality concludes the proof of Eq. (46) of the lemma.
This proves that for initial conditions the upper boundary extension of the components does not modify the final

solution. h
Proposition A.4.
8x 2 ½x0; xn�; 8t 2 ½0; tm�; min
i
dNcðiÞ ðx; tÞ ¼ min

i s:t: ðx;tÞ2DomN
cðiÞ

NcðiÞ ðx; tÞ
Proof. Lemma A.3 states that the above equality holds when one only considers initial boundary conditions. We use the
same method to prove the continuity of the entire solution. Let x 2 [x0, xn], "t 2 [0, tm] be fixed for the entire proof. Let
j > 0 such that ðx; tÞ R DomNcðjÞup

. The same process as previously, knowing that dNcðj�1Þ
up
ðx; �Þ is qmax-Lipschitz, gives
dNcðjÞup
ðx; tÞ ¼ NcðjÞup

x; tj þ
x� x0

v f

� �
þ tj þ

x� x0

v f
� t

� �
qmax P Ncðj�1Þ

up
x; tj þ

x� x0

v f

� �
þ tj þ

x� x0

v f
� t

� �
qmax P dNcðj�1Þ

up
ðx; tÞ
If ðx; tÞ R DomNcð0Þup
, one can prove similarly that:
dNcð0Þup
ðx; tÞ ¼ Ncð0Þup

x;
x� x0

v f

� �
þ x� x0

v f
� t

� �
qmax P Ncð0Þ

ini
x;

x� x0

v f

� �
þ x� x0

v f
� t

� �
qmax P dNcð0Þ

ini
ðx; tÞ
Because any point (x, t) is on a characteristic curve emanating from (x,0), there exists i such that ðx; tÞ 2 Dom NcðiÞð Þ. Fur-
thermore, because of the two previous inequalities, we can extend this statement to the following statement: there exists i
such that ðx; tÞ 2 DomNcðiÞ and dNcðjÞup

ðx; tÞP NðiÞðt; xÞ. The same induction as before gives
9r : NcðrÞ ðx; tÞ ¼min dNcðiÞ
ini
ðx; tÞj0 6 i < n

n o
[ dNcðjÞup

ðx; tÞj0 6 j < m
n o� �
Symmetrically for downstream conditions, we can generate the same results: we know that if

ðx; tÞ R DomNcðjÞ
down

; dNcðjÞ
down
ðx; tÞP dNcðj�1Þ

down
ðx; tÞ and if ðx; tÞ R DomNcð0Þ

down
; dNcð0Þ

down
ðx; tÞP dNcðn�1Þ

ini
ðx; tÞ. Therefore,

9i : ðx; tÞ 2 DomNcðiÞ and dNcðjÞ
down
ðx; tÞP NcðiÞ ðt; xÞ. A quick induction then shows that
min
i s:t: ðx;tÞ2DomN

cðiÞ

dNcðiÞ ðx; tÞ ¼min
i

NcðiÞ ðx; tÞ �
Theorem A.5. Let us consider the Cauchy problem as stated in Eq. (6). If the imposed initial densities are in [0, j] and if the
imposed upstream and downstream flows are in [0, qmax], then the solution to the Cauchy problem is Lipschitz-continuous.
Proof. We apply lemma (A.1) to the result of Proposition A.4. h
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